Almost Analytic Kähler Forms with Respect to a Quadratic Endomorphism with Applications in Riemann-Finsler Geometry

  • Mircea Crasmareanu
  • Laurian-Ioan Pişcoran


The almost analyticity with respect to a quadratic endomorphism T is introduced in an algebraic setting concerning a commutative and associative algebra \(\mathcal {A}\). Two main properties are proved: the first concerns the simultaneous closedness for an almost analytic 1-form \(\omega \) and \(T\omega \) while the second regards the vanishing of the interior product of such a form with the Nijenhuis tensor of T. Also, we introduce an extension of the Frölicher–Nijenhuis formalism to this framework as well as a hermitian type property. When \(\mathcal {A}\) is the algebra of smooth functions on a given (even dimensional) manifold we recover the classical notion of almost analytic 1-form. We study this analyticity and the hermitian type property for the Cartan 1-form of a Riemann-Finsler geometry. Also, we study the almost analytic functions on the tangent bundle of a Riemann-Finsler geometry with respect to the associated almost para-complex and almost complex structure of this geometry. We introduce two new types of Hessian and respectively Laplacian corresponding to these structures. Two types of gradient Ricci solitons are introduced in the tangent bundle.


Quadratic endomorphism Almost T-analytic Kähler form Nijenhuis tensor T-hermitian form \(dd_T\)-Lemma Riemann-Finsler geometry Laplacian Gradient Ricci soliton 

Mathematics Subject Classification

53C15 53A10 16W20 16W25 15A75 53C60 


  1. 1.
    Angella, D.: Cohomological Aspects in Complex non-Kähler Geometry. Lecture notes in mathematics, vol. 2095. Springer, Cham (2014)zbMATHGoogle Scholar
  2. 2.
    Antonelli, P.L., Hrimiuc, D.: \(\varphi \)-Lagrange Laplacians, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 43(2), 215-221 (1997,1998)Google Scholar
  3. 3.
    Bejancu, A., Farran, H.R.: Foliations and geometric structures, Mathematics and Its Applications (Springer), Vol. 580. Springer, Dordrecht (2006)Google Scholar
  4. 4.
    Bucataru, I., Muzsnay, Z.: Sprays metrizable by Finsler functions of constant flag curvature. Differ. Geom. Appl. 31(3), 405–415 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chern, S.-S., Shen, Z.: Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)CrossRefGoogle Scholar
  6. 6.
    Crampin, M.: Kähler and para-Kähler structures associated with Finsler spaces of non-zero constant flag curvature. Houst. J. Math. 34(1), 99–114 (2008)zbMATHGoogle Scholar
  7. 7.
    Crasmareanu, M.: Killing potentials, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 45(1), 169–176 (1999, 2000)Google Scholar
  8. 8.
    Crasmareanu, M.: Nonlinear connections and semisprays on tangent manifolds. Novi Sad J. Math. 33(2), 11–22 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Crasmareanu, M.: Rayleigh dissipation from the general recurrence of metrics in path spaces. Nonlinear Anal. Real World Appl. 13(4), 1551–1561 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Crasmareanu, M.: New tools in Finsler geometry: stretch and Ricci solitons. Math. Rep. (Bucur.) 16(66)(1), 83–93 (2014)Google Scholar
  11. 11.
    Crasmareanu, M.: Semi-basic 1-forms and Courant structure for metrizability problems. Publ. Inst. Math. (Beograd) (N.S.), 98(112), 153–163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Crasmareanu, M.: Last multipliers on weighted manifolds and the weighted Liouville equation. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77(3), 53–58 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Crasmareanu, M., Ida, C.: Almost analyticity on almost (para) complex Lie algebroids. Results Math. 67(3–4), 495–519 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Crasmareanu, M., Ida, C.: Almost analytic forms with respect to a quadratic endomorphism and their cohomology. Turk. J. Math. 39(3), 322–334 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Crasmareanu, M., Piscoran, L.-I.: Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry, Acta Math. Sin. (Engl. Ser.), 30(11), 1877–1884 (2014)Google Scholar
  16. 16.
    Crasmareanu, M., Piscoran, L.-I.: CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry. Period. Math. Hung. 73(2), 240–250 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dragomir, S., Larato, B.: Harmonic functions on Finsler spaces. Istanbul Üniv. Fen Fak. Mat. Derg. 48(1987/89), 67–76 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson structures, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 347. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  19. 19.
    Minguzzi, E.: A Divergence Theorem for Pseudo-Finsler Spaces. arXiv:1508.06053
  20. 20.
    Pitis, Gh, Smaranda, D.: Formes presque analytiques sur une variété presque complexe. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21(2), 23–29 (1991)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Simionescu, C., Pitis, Gh: Some properties of almost analytic forms. Bul. Univ. Brasov Ser. C 31, 75–80 (1989)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Smaranda, D.: The algebra of almost analytic forms and criteries of almost analyticity. In: Special Chapters in Differential Geometry, University of Bucharest, pp. 67–87 (1981) (in Romanian) Google Scholar
  23. 23.
    Tachibana, S.: Analytic tensor and its generalization. Tôhoku Math. J. (2) 12, 208–221 (1960)Google Scholar
  24. 24.
    Tachibana, S., Kotô, S.: On almost-analytic functions, tensors and invariant subspaces. Tôhoku Math. J. (2) 14, 177–186 (1962)Google Scholar
  25. 25.
    Yano, K.: Differential Geometry on Complex and Almost Complex Spaces, International Series of Monographs in Pure and Applied Mathematics, vol. 49. Pergamon Press, New York (1965)Google Scholar
  26. 26.
    Yano, K., Ako, M.: On certain operators associated with tensor fields. Kodai Math. Sem. Rep. 20, 414–436 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhong, C., Zhong, T.: Horizontal Laplace operator in real Finsler vector bundles. Acta Math. Sci. Ser. B Engl. Ed. 28(1), 128–140 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity “Al. I.Cuza”IasiRomania
  2. 2.Department of Mathematics and Computer ScienceNorth University Center of Baia Mare Technical University of ClujBaia MareRomania

Personalised recommendations