Skip to main content
Log in

Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We employ classical Maxwell’s equations formulated in space-time algebra to perform discretization of moving geometries directly in space-time. All the derivations are carried out without any non-relativistic assumptions, thus the application area of the scheme is not restricted to low velocities. The 4D mesh construction is based on a 3D mesh stemming from a conventional 3D mesh generator. The movement of the system is encoded in the 4D mesh geometry, enabling an easy extension of well-known 3D approaches to the space-time setting. As a research example, we study a manifestation of Sagnac’s effect in a rotating ring resonator. In case of constant rotation, the space-time approach enhances the efficiency of the scheme, as the material matrices are constant for every time step, without abandoning the relativistic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmann, B., Kurz, S.: Observers and splitting structures in relativistic electrodynamics. J. Phys. A Math. Theor. 47(43), 435202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bossavit, A.: Computational Electromagnetism. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  3. Bossavit, A.: “Generalized Finite Differences” in computational electromagnetics. PIER 32, 45–64 (2001)

    Article  Google Scholar 

  4. Codecasa, L., Specogna, R., Trevisan, F.: Symmetric positive-definite constitutive matrices for discrete eddy-current problems. IEEE Trans. Magn. 43(2), 510–515 (2007)

    Article  ADS  Google Scholar 

  5. Codecasa, L., Trevisan, F.: Piecewise uniform bases and energetic approach for discrete constitutive matrices in electromagnetic problems. Int. J. Numer. Methods Eng. 65(4), 548–565 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doran, C., Lasenby, A.: Geometric Algebra for Physicists, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge Books Online. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  8. Hehl, F.W.: History related Maxwell’s equations in Minkowski’s world: their premetric generalization and the electromagnetic energy-momentum tensor. Annalen der Physik 17(9–10), 691–704 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hestenes, D.: Space-Time Algebra. Documents on Modern Physics. Gordon and Breach, New York (1966)

  10. Hestenes, D.: Differential Forms in Geometric Calculus. In: Brackx, F., Delanghe, R., Serras, H. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 269–285. Springer, Berlin (1993)

    Chapter  Google Scholar 

  11. Hestenes, D.: The shape of differential geometry in geometric calculus. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 393–410. Springer, Berlin (2011)

    Chapter  Google Scholar 

  12. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. D. Reidel; Distributed in the USA and Canada by Kluwer Academic Publishers, Dordrecht; Boston; Hingham (1984)

  13. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, J.-M.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)

    MATH  Google Scholar 

  15. Klimek, M., Roemer, U., Schoeps, S., Weiland, T.: Space-Time Discretization of Maxwell’s Equations in the Setting of Geometric Algebra. In: 2013 International Symposium on Electromagnetic Theory, editor, IEEE Xplore (2013)

  16. Mattiussi, C.: The geometry of time-stepping. Prog. Electromagn. Res. 32, 123–149 (2001)

    Article  Google Scholar 

  17. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Company, New York (1973)

    Google Scholar 

  18. Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat. EMC 23(4), 377–382 (1981)

    Article  Google Scholar 

  19. Novitski, R., Scheuer, J., Steinberg, B.Z.: Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect. Phys. Rev. E 87, 023303 (2013)

    Article  ADS  Google Scholar 

  20. Peng, C., Hui, R., Luo, X., Li, Z., Xu, A.: Finite-difference time-domain algorithm for modeling Sagnac effect in rotating optical elements. Opt. Express 16(8), 5227–5240 (2008)

    Article  ADS  Google Scholar 

  21. Salamon, J., Moody, J., Leok M.: Geometric representations of whitney forms and their generalization to Minkowski spacetime. arXiv:1402.7109v1 (2014)

  22. Schuhmann, R., Weiland, T.: A stable interpolation technique for FDTD on nonorthogonal grids. Int. J. Numer. Model. Electron. Netw. Devices Fields 11(6), 299–306 (1998)

    Article  MATH  Google Scholar 

  23. Sobczyk, G.: Simplicial calculus with geometric algebra. In: Micali, A., Boudet, R., Helmstetter, J. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 279–292. Springer, Berlin (2011)

  24. Steinberg, B.Z., Shamir, A., Boag, A.: Two-dimensional Green’s function theory for the electrodynamics of a rotating medium. Phys. Rev. E 74, 016608 (2006)

    Article  ADS  Google Scholar 

  25. Stern, A., Tong, Y., Desbrun, M., Marsden, J.E.: Geometric computational electrodynamics with variational integrators and discrete differential forms. arXiv:0707.4470 [v2] (2009)

  26. Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model. 9, 295–319 (1996)

    Article  Google Scholar 

  27. Yang, Y., Pesavento, M.: A unified successive pseudoconvex approximation framework. IEEE. Trans. Sig Process. 65(13), 3313–3328 (2017). https://doi.org/10.1109/TSP.2017.2684748

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Klimek.

Additional information

Communicated by Bertfried Fauser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimek, M., Kurz, S., Schöps, S. et al. Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra. Adv. Appl. Clifford Algebras 28, 22 (2018). https://doi.org/10.1007/s00006-018-0841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0841-3

Mathematics Subject Classification

Keywords

Navigation