Generalized Quaternion Rings over \(\mathbb {Z}/n\mathbb {Z}\) for an Odd \(\varvec{n}\)

  • José María Grau
  • Celino Miguel
  • Antonio M. Oller-Marcén


We consider a generalization of the quaternion ring \(\Big (\frac{a,b}{R}\Big )\) over a commutative unital ring R that includes the case when a and b are not units of R. In this paper, we focus on the case \(R=\mathbb {Z}/n\mathbb {Z}\) for and odd n. In particular, for every odd integer n we compute the number of non R-isomorphic generalized quaternion rings \(\Big (\frac{a,b}{\mathbb {Z}/n\mathbb {Z}}\Big )\).


Quaternion algebra \(\mathbb {Z}/n\mathbb {Z}\) Structure 

Mathematics Subject Classification

11R52 16-99 


  1. 1.
    Conrad, K. Quaternion algebras. (2016). Accesed 25 May 2017
  2. 2.
    Grau, J.M., Miguel, C.J., Oller-Marcén, A.M.: On the structure of quaternion rings over \({\mathbb{Z}}/{n}{\mathbb{Z}}\). Adv. Appl. Clifford Algebras 25(4), 875–887 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gross, B.H., Lucianovic, M.W.: On cubic rings and quaternion rings. J. Number Theory 129(6), 1468–1478 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hahn, A.J.: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups (Universitext). Springer, New York (1994)CrossRefMATHGoogle Scholar
  5. 5.
    Kanzaki, T.: On non-commutative quadratic extensions of a commutative ring. Osaka J. Math. 10, 597–605 (1973)MathSciNetMATHGoogle Scholar
  6. 6.
    Knus, M.-A.: Quadratic and Hermitian Forms Over Rings, vol. 294. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1991)Google Scholar
  7. 7.
    Miguel, C.J., Serôdio, R.: On the structure of quaternion rings over \({\mathbb{Z}}_{p}\). Int. J. Algebra 5(25–28), 1313–1325 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    O’Meara, T.: Introduction to Quadratic Forms. Classics in Mathematics. Springer, Berlin (2000)Google Scholar
  9. 9.
    Özdemir, M.: The roots of a split quaternion. Appl. Math. Lett. 22(2), 258–263 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Özen, M., Güzeltepe, M.: Cyclic codes over some finite quaternion integer rings. J. Frankl. Inst. 348(7), 1312–1317 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pierce, R.S.: Associative Algebras. Springer, New York (1982)CrossRefMATHGoogle Scholar
  12. 12.
    Rosen, K.H.: Elementary Number Theory and Its Applications. Addison-Wesley, Reading (2000)MATHGoogle Scholar
  13. 13.
    Schafer, R.D.: An Introduction to Nonassociative Algebras. Dover Publications, New York (1995)MATHGoogle Scholar
  14. 14.
    Shah, T., Rasool, S.S.: On codes over quaternion integers. Appl. Algebra Eng. Commun. Comput. 24(6), 477–496 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tuganbaev, A.A.: Quaternion algebras over commutative rings (Russian). Math. Notes 53(1–2), 204–207 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Voight, J.: Characterizing quaternion rings over an arbitrary base. J. Reine Angew. Math. 657, 113–134 (2011)MathSciNetMATHGoogle Scholar
  17. 17.
    Voight, J.: Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P.H. (eds.) Quadratic and Higher Degree Forms, pp. 255–298. Springer, New York (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de OviedoOviedoSpain
  2. 2.Instituto de TelecomunicaçoesUniversidade de Beira InteriorPolo de CovilhaPortugal
  3. 3.Centro Universitario de la Defensa de ZaragozaSaragossaSpain

Personalised recommendations