Advances in Applied Clifford Algebras

, Volume 26, Issue 1, pp 183–197 | Cite as

The Fermi-Walker Derivative on the Spherical Indicatrix of a Space Curve

  • Fatma Karakuş
  • Yusuf Yaylı


In this paper Fermi-Walker derivative and Fermi-Walker parallelism and non-rotating frame concepts are given along the spherical indicatrix of a curve in E 3. First, we consider a curve in Euclid space and investigate the Fermi-Walker derivative along the tangent. The concepts which Fermi-Walker derivative are analyzed along its tangent. Then, the Fermi-Walker derivative and its theorems are analyzed along the principal normal indicatrix and the binormal indicatrix of any curve in E 3.


Fermi-Walker derivative Fermi-Walker parallelism Non-rotating frame Tangent indicatrix Principal normal indicatrix Binormal indicatrix Helix 

Mathematics Subject Classification

Primary 53B20 53B21 53B50 Secondary 53Z05 53Z99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnan R.: Space curves, anholonomy and nonlinearity. Pramana J. Phys. 64(4), 607–615 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Benn, I.M., Tucker, R.W.: Wave mechanics and inertial guidance. Phys. Rev. D 39(6), 1594 (1–15) (1989). doi: 10.1103/PhysRevD.39.1594
  3. 3.
    Fermi E.: Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Nat. 31, 184–306 (1922)MATHGoogle Scholar
  4. 4.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of pacetime. Cambridge University Press, Cambridge (1973)Google Scholar
  5. 5.
    Karakuş, F., Yaylı, Y.: On the Fermi-Walker derivative and Non-rotating frame. Int. J. Geom. Methods Mod. Phys. 9(8), 1250066 (11 pages) (2012)Google Scholar
  6. 6.
    Karakuş, F., Yaylı, Y.: The Fermi-Walker derivative in Minkowski space \({E_{1}^{3}}\) (submitted)Google Scholar
  7. 7.
    O’Neill, B.: Semi Riemannian Geometry, with Applications to Relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York (1983)Google Scholar
  8. 8.
    Pripoae, G.T.: Generalized Fermi-Walker transport, libertas math., XIX, 65–69 (1999)Google Scholar
  9. 9.
    Pripoae, G.T.: Generalized Fermi-Walker Parallelism Induced by Generalized Schouten Connections, pp. 117–125. Geometry Balkan Press, Bucharest (2000)Google Scholar
  10. 10.
    Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)Google Scholar
  11. 11.
    Struik D.J.: Lectures on Classical Differential Geometry. Dover, New-York (1988)MATHGoogle Scholar
  12. 12.
    Walker A.G.: Relative co-ordinates. Proc. R. Soc. Edinb. 52, 345–353 (1932)Google Scholar
  13. 13.
    Weinberg, S.: Geavitation and Cosmology. Wiley, New York (1972)Google Scholar
  14. 14.
    Yaylı  Y., Uzunoğlu, B., Gök,  İ.: A new approach on curves of constant precession. arXiv:1311.4730v1 [math. DG] (2013)

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and SciencesSinop UniversitySinopTurkey
  2. 2.Department of Mathematics, Faculty of ScienceAnkara UniversityAnkaraTurkey

Personalised recommendations