Advertisement

Advances in Applied Clifford Algebras

, Volume 26, Issue 1, pp 151–168 | Cite as

Geometric Algebra-based Modeling and Analysis for Multi-layer, Multi-temporal Geographic Data

  • Yong Hu
  • Wen Luo
  • Zhaoyuan Yu
  • Linwang Yuan
  • Guonian Lü
Article

Abstract

Aiming at the modeling and analysis of the multi-layer, multi-temporal geographical model simulation data, the geometric algebra (GA) is introduced to design methods for data modeling, spatio-temporal queries and dynamic visualization. Algorithms, including the slices and cross-section, area and volume computation, morphology characteristics computation and change detection, are constructed directly based on the GA operators. We developed a prototype system “GA-Coupling Analyzer” to integrate all the methods. The system is demonstrated with the simulation data of Antarctic “Ice–Ocean–Land” coupled changes. The results suggest that our approach can provide a unified geometric meaningful approach for complex geo-simulation data representation and analysis. The representation can well integrate the geometric representation and algebraic computation. With the powerful GA operators, the spatio-temporal analysis methods can be directly and simply constructed and implemented.

Keywords

GIS Geometric algebra Data model Spatio-temporal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agouris P., Stefanidis A., Gyftakis S.: Differential snakes for change detection in road segments. Photogramm. Eng. Remote Sens. 67(12), 1391–1399 (2001)Google Scholar
  2. 2.
    Aguirre-Gutierrez J., Seijmonsbergen A., Duivenvoorden J.: Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico. Appl. Geogr. 34, 29–37 (2012)CrossRefGoogle Scholar
  3. 3.
    Anderson J., Shipp S., Lowe A. et al.: The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quat. Sci. Rev. 21(1–3), 49–70 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Chen, X., Schmitt, V.: Intrinsic surface properties from surface triangulation. In: Proceedings of the European Conference on Computer Version, (1992), pp. 739–743Google Scholar
  5. 5.
    Dong, C., Wang, G.: Curvatures estimation on triangular mesh. Journal of Zhejiang University Science, 6A(Suppl. I)(2005), 128–136Google Scholar
  6. 6.
    Dorst, L.: Tutorial: Structure-Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra. In: Bayro-Corrochano E., Scheuermann G. (eds.) Geometric Algebra Computing. Springer, London, pp 35–52 (2010)Google Scholar
  7. 7.
    Dorst, L., Lasenby, J.: Guide to geometric algebra in practice. Springer, London 2011Google Scholar
  8. 8.
    Dorst, L., Fontijne, D., Mann, S.: Geometric algebra for computer science: an object-oriented approach to geometry. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann Publishers, San Francisco (2007)Google Scholar
  9. 9.
    Franchini S., Gentile A., Sorbello F. et al.: An embedded, FPGA-based computer graphics coprocessor with native geometric algebra support. Integr. VLSI J. 42(3), 346–355 (2009)CrossRefGoogle Scholar
  10. 10.
    Hazelton N., Bennett L.M., Masel J.: Topological structures for 4-dimensional geographic information-systems. Comput. Environ. Urban Syst. 16(3), 227–237 (1992)CrossRefGoogle Scholar
  11. 11.
    Hebel M., Arens M., Stilla U.: Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data. ISPRS J. Photogramm. Remote Sens. 86, 52–64 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Holland P.R., Bruneau N., Enright C. et al.: Modeled trends in Antarctic Sea ice thickness. J. Clim. 27(10), 3784–3801 (2014)CrossRefGoogle Scholar
  13. 13.
    Luca F., D’Ambrosio D., Robustelli G. et al.: Integrating geomorphology, statistic and numerical simulations for landslide invasion hazard scenarios mapping: an example in the Sorrento Peninsula (Italy). Comput. Geosci. 67, 163–172 (2014)CrossRefADSGoogle Scholar
  14. 14.
    Nagler P., Glenn E., Hursh K. et al.: Vegetation mapping for change detection on an arid-zone river. Environ. Monit. Assess. 109(1–3), 255–274 (2005)CrossRefGoogle Scholar
  15. 15.
    Paragios N., Deriche R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)CrossRefGoogle Scholar
  16. 16.
    Taubenböck H., Wiesner M., Felbier A. et al.: New dimensions of urban landscapes: the spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Appl. Geogr. 47, 137–153 (2014)CrossRefGoogle Scholar
  17. 17.
    Vanneschi C., Salvini R., Massa G. et al.: Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy). Comput. Geosci. 69, 41–54 (2014)CrossRefADSGoogle Scholar
  18. 18.
    Walter V.: Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 58(3–4), 225–238 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Williams T.: Climate Science: How Antarctic ice retreats. Nature 510(7503), 39–40 (2014)CrossRefADSGoogle Scholar
  20. 20.
    Worboys M.: Event-oriented approaches to geographic phenomena. Int. J. Geogr. Inf. Sci. 19(1), 1–28 (2005)CrossRefGoogle Scholar
  21. 21.
    Yu Z., Yuan L., Luo W. et al.: Boundary restricted non-overlapping sphere tree for unified multidimensional solid object index. J. Softw. 23(10), 2746–2759 (2012)CrossRefGoogle Scholar
  22. 22.
    Yuan L., Yu Z., Chen S.: CAUSTA: clifford algebra-based unified spatio-temporal analysis. Trans. GIS 14(s1), 59–83 (2010)CrossRefGoogle Scholar
  23. 23.
    Yuan L., Yu Z., Luo W. et al.: A 3D GIS spatial data model based on conformal geometric algebra. Sci. China Earth Sci. 54(1), 101–112 (2011)CrossRefGoogle Scholar
  24. 24.
    Yuan L., Lü G., Luo W. et al.: Geometric algebra method for multidimensionally-unified GIS computation. Chin. Sci. Bull. 57(7), 802–811 (2012)CrossRefGoogle Scholar
  25. 25.
    Yuan L., Yu Z., Luo W. et al.: Geometric algebra for multidimension-unified geographical information system. Adv. Appl. Clifford Algebras 23(2), 497–518 (2013)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Yong Hu
    • 1
    • 2
  • Wen Luo
    • 1
  • Zhaoyuan Yu
    • 1
    • 3
  • Linwang Yuan
    • 1
    • 3
  • Guonian Lü
    • 1
    • 3
  1. 1.Key Laboratory of Virtual Geographic EnvironmentMinistry of EducationNanjingChina
  2. 2.Department of Computer Science and TechnologyNanjing Normal UniversityNanjingChina
  3. 3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Development and ApplicationNanjing Normal UniversityNanjingChina

Personalised recommendations