Skip to main content
Log in

Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, we study to express the theory of curves including a wide section of Lorentzian geometry in terms of spinors with two hyperbolic components which has an important place in the Clifford algebra. In other words, we express the rotation, element of SO(1, 3), between the Frenet frame and the other frame defined as alternatively of the (spacelike or timelike) curves in Minkowski space \({\mathbb{R}_1^3}\) in terms of the rotation, element of \({SU(2,\mathbb{H})}\), with the aid of the hyperbolic spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonuccio, F.: Hyperbolic Numbers and the Dirac Spinor (1998). arXiv:hep-th/9812036v1

  2. Balci, Y, Erisir, T., Gungor, M.A.: Hyperbolic spinor darboux equations of spacelike curves in Minkowski 3-space, XII. In: National Geometry Symposium, Bilecik, Turkey, June 23–26 (2014)

  3. Bilici M., Caliskan M.: On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space. Int. Math. Forum. 4(31), 1497–1509 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Birman G.S., Nomizu K.: Trigonometry in Lorentzian Geometry. Ann. Math. Mont. 91(9), 534–549 (1984)

    MathSciNet  Google Scholar 

  5. Bishop L.R.: There is more than one way to frame a curve. Am. Math. Monthly 82(3), 246–251 (1975)

    Article  MATH  Google Scholar 

  6. Brauer R., Weyl H.: Spinors in n dimensions. Am. J. Math 57, 425–449 (1935)

    Article  MathSciNet  Google Scholar 

  7. Carmeli, M.: Group Theory and General Relativity, Representations of the Lorentz Group and their Applications to the Gravitational Field. McGraw-Hill, Imperial College Press, New York (1977)

  8. Cartan, É.: The Theory of Spinors. The M.I.T. Press, Cambridge (1966).

  9. Del Castillo G.F.T., Barrales G.S.: Spinor formulation of the differential geometry of curves. Revista Colombiana de Matematicas 38, 27–34 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Do Carmo, MP.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)

  11. Ergin A.A.: Timelike Darboux curves on a timelike surface \(M \subset M_1^3\). Hadron. J. 24(6), 701–712 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Friedrich, T.: Dirac Operators in Riemannian Geometry, American Mathematical Society Providence, Rhode Island, (2000).

  13. Hanson, A.J., Ma, H.: Parallel Transport Approach to Curve Framing, Tech. Math. Rep., Indiana University, p. 425 (1995)

  14. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, 2nd ed. Kluwer, The Netherlands (1992).

  15. Ikawa T.: On curves and submanifolds in an indefinite-Riemannian manifold. Tsukuba J. Math. 9(2), 353–371 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Kisi I., Tosun M.: Spinor Darboux Equations of Curves in Euclidean 3-Space. Math. Morav. 19(1), 87–93 (2015)

    MathSciNet  Google Scholar 

  17. Ketenci, Z., Erisir, T., Gungor, M.A.: Spinor equations of curves in minkowski space, V. In: Congress of the Turkic World Mathematicians, Kyrgyzstan, June 05–07 (2014)

  18. Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton University Press, New Jersey (1989)

  19. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York (1983)

  20. O’Donnell, P.: Introduction to 2-Spinors in General Relativity. World Scientific Publishing Co. Pte. Ltd., London (2003)

  21. Ozdemir M., Ergin A.A.: Spacelike Darboux curves in Minkowski 3 space. Differ. Geom. Dyn. Syst. 9, 131–137 (2007)

    MathSciNet  Google Scholar 

  22. Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer, New York (1986).

  23. Sobczyk G.: The Hyperbolic Number Plane. College Math. J. 26(4), 268–280 (1995)

    Article  Google Scholar 

  24. Unal D., Kisi I., Tosun M.: Spinor bishop equation of curves in Euclidean 3-space. Adv. Appl. Cliff. Algebr. 23(3), 757–765 (2013)

    Article  MathSciNet  Google Scholar 

  25. Vivarelli M.D.: Development of spinors descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celes. Mech. 32, 193–207 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tülay Erişir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erişir, T., Ali Güngör, M. & Tosun, M. Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame. Adv. Appl. Clifford Algebras 25, 799–810 (2015). https://doi.org/10.1007/s00006-015-0552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0552-y

Mathematics Subject Classification

Keywords

Navigation