Advances in Applied Clifford Algebras

, Volume 25, Issue 3, pp 741–753 | Cite as

Incomplete Tribonacci–Lucas Numbers and Polynomials

  • Nazmiye Yilmaz
  • Necati Taskara


In this paper, we define Tribonacci–Lucas polynomials and present Tribonacci–Lucas numbers and polynomials as a binomial sum. Then, we introduce incomplete Tribonacci–Lucas numbers and polynomials. In addition we derive recurrence relations, some properties and generating functions of these numbers and polynomials. Also, we find the generating function of incomplete Tribonacci polynomials which is given as the open problem in [12].


Binomial sums Generating functions Incomplete Tribonacci–Lucas numbers Incomplete Tribonacci–Lucas polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alladi K., Hoggatt V.E. Jr.: On the tribonacci numbers and related functions. Fibonacci Quarterly 15, 42–45 (1977)MATHMathSciNetGoogle Scholar
  2. 2.
    Dil A., Mezo I.: A symmetric algorithm for hyperharmonic and Fibonacci numbers. Applied Mathematics and Computation 206(2), 942–951 (2008)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Djordjevic G.B., Srivastava H.M.: Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers. Mathematical and Computer Modelling 42, 1049–1056 (2005)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Elia M.: Derived sequences, the Tribonacci recurrence and cubic forms. The Fibonacci Quarterly 39(2), 107–109 (2001)MATHMathSciNetGoogle Scholar
  5. 5.
    Feinberg M.: Fibonacci–Tribonacci. The Fibonacci Quarterly 1(3), 70–74 (1963)Google Scholar
  6. 6.
    Filipponi P.: Incomplete Fibonacci and Lucas Numbers. Rend. Circ. Mat. Palermo (Serie II) 45, 37–56 (1996)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hoggatt V.E. Jr., Bicknell M.: Generalized Fibonacci polynomials. Fibonacci Quarterly 11, 457–465 (1973)MATHMathSciNetGoogle Scholar
  8. 8.
    Kilic E.: Tribonacci sequences with certain indices and their sums. Ars Combinatoria 86, 13–22 (2008)MATHMathSciNetGoogle Scholar
  9. 9.
    T. Koshy, Fibonacci and Lucas Numbers with Applications. John Wiley and Sons Inc, NY, (2001).Google Scholar
  10. 10.
    Philippou A.N., Muwafi A.A.: Waiting for the Kth consecutive success and the Fibonacci sequence of order K. The Fibonacci Quarterly 20(1), 28–32 (1982)MATHMathSciNetGoogle Scholar
  11. 11.
    Pinter A., Srivastava H.M.: Generating functions of the incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo (Serie II) 48, 591–596 (1999)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.S. Ramirez and V.F. Sirvent, Incomplete Tribonacci Numbers and Polynomials. Journal of Integer Sequences 17, article 14.4.2, (2014).Google Scholar
  13. 13.
    Spickerman W.R.: Binet’s formula for the Tribonacci sequence. The Fibonacci Quarterly 20(2), 118–120 (1982)MATHMathSciNetGoogle Scholar
  14. 14.
    Tasci D., Firengiz M.C.: Incomplete Fibonacci and Lucas p–numbers. Mathematical and Computer Modelling 52, 1763–1770 (2010)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Tasci, M.C. Firengiz and N. Tuglu, Incomplete bivariate Fibonacci and Lucas p–polynomials. Discrete Dynam. Nat. Soc. (2012), article ID 840345.Google Scholar
  16. 16.
    Taskara N., Uslu K., Gulec H.H.: On the properties of Lucas numbers with binomial coefficients. Appl. Math. Lett. 23, 68–72 (2010)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Yazlik Y., Taskara N.: A Note on Generalized k–Horadam Sequence. Computers and Mathematics with Applications 63(1), 36–41 (2012)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    N. Yilmaz, Incomplete Tribonacci Numbers and Its Determinants. Ms.Thesis, Selçuk University, (2011).Google Scholar
  19. 19.
    Yilmaz N., Taskara N.: Tribonacci and Tribonacci–Lucas numbers via the determinants of special matrices. Applied Mathematical Sciences 8(39), 1947–1955 (2014)MathSciNetGoogle Scholar
  20. 20.
    H. Wilf, Generatingfunctionology. CRC Press, third edition, (2005).Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsSelcuk UniversityKonyaTurkey

Personalised recommendations