Advances in Applied Clifford Algebras

, Volume 25, Issue 2, pp 385–402 | Cite as

Existence of Stationary States for A-Dirac Equations with Variable Growth

  • Giovanni Molica Bisci
  • Vicenţiu D. Rădulescu
  • Binlin Zhang


In this paper, using a Hodge-type decomposition of variable exponent Lebesgue spaces of Clifford-valued functions and variational methods, we study the properties of weak solutions to the homogeneous and nonhomogeneous A-Dirac equations with variable growth in the setting of variable exponent Sobolev spaces of Clifford-valued functions.


Clifford analysis A-Dirac equation variable exponent Caccioppoli estimates Hodge-type decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ablamowicz (ed.), Clifford algebras and their applications in mathematical physics.Vol. 1: algebra andphysics, Birkhäuser, Boston, 2000.Google Scholar
  2. 2.
    Carozza M., Passarelli A.: On very weak solutions of a class of nonlinear elliptic systems. Commment. Math. Univ. Carolin. 41, 493–508 (2000)MATHGoogle Scholar
  3. 3.
    Z. Wang, S. Chen, The relation between A-Harmonic operator and A-Dirac system. Journal of Inequality and Applications 2013, DOI: 10.1186/1029-242X-2013-362.
  4. 4.
    Clifford W.K.: Preliminary sketch of bi-quaternions. Proc. London Math. Soc. 4, 381–395 (1873)MATHMathSciNetGoogle Scholar
  5. 5.
    Diening L., Kaplicky P., Schwarzacher S.: BMO estimates for the p-Laplacian. Nonlinear Analysis 75, 637–650 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents. Springe-Verlag, Berlin, 2011.Google Scholar
  7. 7.
    L. Diening, P. Kaplicky, Campanato estimates for the generalized Stokes system. Annali di Matematica Pura ed Applicata, to appear.Google Scholar
  8. 8.
    L. Diening, P. Kaplicky, L q theory for a generalized Stokes system. Manuscripta Mathematica 141 (2013), 333–361.Google Scholar
  9. 9.
    L. Diening, D. Lengeler, M. Ružička, The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations 56 (2011), 789– 811.Google Scholar
  10. 10.
    C. Doran, A. Lasenby, Geometric algebra for physicists. Cambridge University Press, Cambridge, 2003.Google Scholar
  11. 11.
    J. Dubinskii, M. Reissig, Variational problems in Clifford analysis. Mathematical Methods in the Applied Sciences 25 (2002), 1161–1176.Google Scholar
  12. 12.
    X. Fan, D. Zhao, On the spaces L p(x) and W m,p(x). Journal of Mathematical Analysis and Applications 263 (2001), 424–446.Google Scholar
  13. 13.
    A. Fiorenza, C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1. Studia Math. 127 (1998), 223–231.Google Scholar
  14. 14.
    Fu Y.: Weak solution for obstacle problem with variable growth. Nonlinear Analysis 59, 371–383 (2004)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Y. Fu, B. Zhang, Clifford valued weighted variable exponent spaces with an application to obstacle problems. Advances in Applied Clifford Algebras 23 (2013) 363–376.Google Scholar
  16. 16.
    Fu Y., Zhang B.: Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Math. J. 63, 643–670 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Y. Fu, V. Rădulescu, B. Zhang, Hodge decomposition of variable exponent spaces of Clifford-valued functions and applications to Dirac and Stokes equations. Preprint.Google Scholar
  18. 18.
    Giachetti D., Schiachi R.: Boundary higher integrability for the gradient of distributional solutions of nonlinear systems. Studia Math. 123, 175–184 (1997)MATHMathSciNetGoogle Scholar
  19. 19.
    Gilbert J., Murray M. A. M.: Clifford algebra and Dirac oprators in harmonic analysis. Oxford University Press, Oxford (1993)Google Scholar
  20. 20.
    K. Gürlebeck, W. Sprößig, Quaternionic analysis and elliptic boundary value problems. Birkhäuser, Boston, 1990.Google Scholar
  21. 21.
    K. Gürlebeck, W. Sprößig, Quaternionic and Clifford calculus for physicists and engineers. John Wiley & Sons, New York, 1997.Google Scholar
  22. 22.
    K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic functions in the plane and n-dimensional space. Birkhäuser, Boston, 2008.Google Scholar
  23. 23.
    L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997), 249–258.Google Scholar
  24. 24.
    P. Harjulehto, P. Hästö, U. V. Lê, M. Nuortio, Overview of differential equations with non-standard growth. Nonlinear Analysis 72 (2010), 4551–4574.Google Scholar
  25. 25.
    P. Harjulehto, P. Hästo, V. Latvala, Minimizers of the variable exponent, nonuniformly convex Dirichlet energy. J. Math. Pures Appl. 89 (2008), 174–197.Google Scholar
  26. 26.
    Heisenberg W.: Doubts and hopes in quantum-electrodynamics. Physica 19, 897–908 (1953)CrossRefADSMATHMathSciNetGoogle Scholar
  27. 27.
    T. Iwaniec, C. Sbordone, Weak minima of variational integrals. J. Reine Angew. Math. 454 (1994), 143–161.Google Scholar
  28. 28.
    U. Kähler, On a direct decomposition in the space Lp(Ω). Zeitschrift für Analysis und ihre Anwendungen 4 (1999), 839–848.Google Scholar
  29. 29.
    O. Kováčik, J. Rákosník, On spaces L p(x) and W m,p(x). Czechoslovak Math. J. 41 (1991), 592–618.Google Scholar
  30. 30.
    J. L. Lions, Quelques méthodes de resolution des problèmes aux limites nonlinéaires. Dunod, Paris, 1969.Google Scholar
  31. 31.
    Y. Lu, G. Bao, Stability of weak solutions to obstacle problem in Clifford analysis. Advances in Difference Equations, 2013 (2013), 1–11.Google Scholar
  32. 32.
    C. A. Nolder, A-harmonic equations and the Dirac operator. Journal of Inequality and Applications 2010, Article ID 124018.Google Scholar
  33. 33.
    Nolder C. A.: Nonlinear A-Dirac equations. Advances in Applied Clifford Algebras 21, 429–440 (2011)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Nolder C. A., Ryan J.: p-Dirac operators. Advances in Applied Clifford Algebras 19, 391–402 (2009)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    A. Ranada, J.M. Usón, Bound states of a classical charged nonlinear Dirac field in a Coulomb potential. J. Math. Phys. 22 (1981), 2533–2538.Google Scholar
  36. 36.
    M. Ružička, Electrorheological fluids: modeling and mathematical theory. Springer-Verlag, Berlin, 2000.Google Scholar
  37. 37.
    J. Ryan, W. Sprößig (eds.), Clifford algebras and their applications in mathematical physics. Vol. 2: Clifford analysis. Birkhäuser, Boston, 2000.Google Scholar
  38. 38.
    Thaller B.: The Dirac equation. Springer, Berlin (2010)Google Scholar
  39. 39.
    Weyl H.: A remark on the coupling of gravitation and electron. Physical Rev. 77, 699–701 (1950)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    B. Zhang, Y. Fu, Weak solutions for A-Dirac equations with variable growth in Clifford analysis. Electronic Journal of Differential Equations 2012 (2012), 1–10.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Giovanni Molica Bisci
    • 1
  • Vicenţiu D. Rădulescu
    • 2
  • Binlin Zhang
    • 3
  1. 1.Dipartimento P.A.U.Università degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of MathematicsHeilongjiang Institute of TechnologyHarbinChina

Personalised recommendations