Advertisement

Advances in Applied Clifford Algebras

, Volume 24, Issue 4, pp 1039–1045 | Cite as

A Discrete Theorem of Goursat

  • Angela Hommel
Article

Abstract

In order to describe stress and displacement fields in the neightborhood of singularities in fracture mechanics the so-called theory of complex stress function based on Kolosov and Muskhelishvili can be used. The relation between linear elasticity and complex function theory is based on the Theorem of Goursat. In this paper a discrete version of the Theorem is proved.

Keywords

Holomorphic functions biharmonic equation discrete functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Kolosov, Über eine Anwendung der Theorie der Funktion einer komplexen Veränderlichen auf das ebene Problem der mathematischen Elastizitätstheorie (Russian). Ph. D. Thesis.Yuriew (Dorpat) 1909.Google Scholar
  2. 2.
    Kolosov G.W.: Über einige Eigenschaften des ebenen Problems der Elastizitätstheorie. Zeitschrift fü r Mathematik und Physik 62, 383–409 (1914)Google Scholar
  3. 3.
    Muskhelishvili N.I.: Einige Grundaufgaben der mathematischen Elastizitätstheorie. VEB Fachbuchverlag, Leipzig (1971)Google Scholar
  4. 4.
    Meleshko V.V.: Selected topics in the history of the two-dimensional biharmonic problem. Journal of Applied Mechanics 56((1), 33–85 (2003)CrossRefGoogle Scholar
  5. 5.
    E. Goursat, Sur l’équation Δ Δu = 0. . Bulletin de la Société Mathématique de France 26 (1898), 236.Google Scholar
  6. 6.
    S. Bock, K. Gü rlebeck, On a Spatial Generalization of the Kolosov-Muskhelishvili Formulae. Math. Meth. Appl. Sciences 32 (2) (2009), 223-240Google Scholar
  7. 7.
    A.A. Samarskij, Theorie der Differenzenverfahren. Akademische Verlagsgesellschaft Geest und Portig K.-G. Leipzig 1984.Google Scholar
  8. 8.
    Duffin R.J.: Discrete potential theory. Duke Math. J. 20, 233–251 (1953)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Duffin R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    J. Ferrand, Fonctions preharmonique et fonctions preholomorphes. Bulletin des Sciences Mathematique, sec. series.Google Scholar
  11. 11.
    N. Faustino, U. Kähler, F. Sommen, Dirac Operators in Clifford Analysis. Adv. appl. Clifford alg. Birkhäuser Verlag Basel, doi: 10.1007/s00006-007-0041-z
  12. 12.
    H. Ridder, Schepper H, Kähler U, Sommen F. Discrete function theory based on skew Weyl relations. Proceedings of the American Mathematical Society, 2009Google Scholar
  13. 13.
    A. Hommel, Fundamentallösungen partieller Differenzenoperatoren und die Lösung diskreter Randwertprobleme mit Hilfe von Differenzenpotentialen. Dissertation, Bauhaus Universität Weimar 1998.Google Scholar
  14. 14.
    F Brackx, H. Schepper, F. Sommen, L.V. de Voorde, Discrete Clifford analysis: an overview. Cubo 11 (2009), 55-71.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.University of Applied Sciences Zwickau, Faculty of EconomicsZwickauGermany

Personalised recommendations