Advances in Applied Clifford Algebras

, Volume 24, Issue 4, pp 1145–1157 | Cite as

Some Integral Representations and Singular Integral over Plane in Clifford Analysis

  • Zhang Zhongxiang


In this paper, Cauchy type integral and singular integral over hyper-complex plane \({\prod}\) are considered. By using a special Möbius transform, an equivalent relation between \({\widehat{H}^\mu}\) class functions over \({\prod}\) and \({H^\mu}\) class functions over the unit sphere is shown. For \({\widehat{H}^\mu}\) class functions over \({\prod}\) , we prove the existence of Cauchy type integral and singular integral over \({\prod}\) . Cauchy integral formulas as well as Poisson integral formulas for monogenic functions in upper-half and lower-half space are given respectively. By using Möbius transform again, the relation between the Cauchy type integrals and the singular integrals over \({\prod}\) and unit sphere is built.


Clifford algebra Möbius transform integral representation singular integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Begehr H.: Iterations of Pompeiu operators. Mem. Diff. Eq. Math. Phys. 12, 3–21 (1997)MathSciNetGoogle Scholar
  2. 2.
    Begehr H.: Iterated integral operators in Clifford analysis. Journal for Analysis and its Applications 18, 361–377 (1999)MATHMathSciNetGoogle Scholar
  3. 3.
    H. Begehr, Representation formulas in Clifford analysis. Acoustics, Mechanics, and the Related Topics of Mathematical Analysis. World Scientific Singapore 2002, 8–13.Google Scholar
  4. 4.
    H. Begehr, Zhang Zhongxiang, Du Jinyuan, On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra. ActaMathematica Scientia 23 B(1) (2003), 95–103.Google Scholar
  5. 5.
    F. Brack, R. Delanghe and F. Sommen, Clifford Analysis. Research Notes in Mathematics 76. Pitman Books Ltd, London, 1982.Google Scholar
  6. 6.
    Delanghe R.: On regular analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Delanghe R.: On the singularities of functions with values in a Clifford algebra. Math. Ann. 196, 293–319 (1972)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Delanghe R.: Clifford analysis: History and perspective. Computational Methods and Function Theory. 1, 107–153 (2001)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    R. Delanghe, F. Brackx, Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37 (1978), 545–576.Google Scholar
  10. 10.
    R. Delanghe, F. Sommen, V. Soucek, Clifford algebra and spinor-valued functions. Kluwer, Dordrecht, 1992.Google Scholar
  11. 11.
    S. L. Eriksson, H. Leutwiler, Hypermonogenic functions and Möbius transformations. Advances in Applied Clifford Algebras, 11 (s2) (2001), 67–76.Google Scholar
  12. 12.
    E. Franks, J. Ryan, Bounded monogenic functions on unbounded domains. Contemporary Mathematics, 212 (1998), 71–79.Google Scholar
  13. 13.
    K. Gürlebeck, U. Kähler, J. Ryan, W. Sprössig, Clifford analysis over unbounded Domains. Advances in Applied Mathematics 19 (2) (1997), 216–239.Google Scholar
  14. 14.
    K. Gürlebeck, W. Sprössig, Quaternionic analysis and elliptic boundary value problems. Akademie-Verlag, Berlin, 1989.Google Scholar
  15. 15.
    V. Iftimie, Functions hypercomplex. Bull. Math. Soc. Sci. Math. R. S. Romania. 57 (9) (1965), 279–332.Google Scholar
  16. 16.
    Lu Jianke, Boundary value problems of analytic functions. Singapor,World Sci. Publ., 1993.Google Scholar
  17. 17.
    Muskhelishvilli, N. I., Singular integral equations. NauKa, Moscow, 1968.Google Scholar
  18. 18.
    E. Obolashvili, Higher order partial differential equations in Clifford analysis. Birkhauser, Boston, Basel, Berlin, 2002.Google Scholar
  19. 19.
    Olea E.M.: Morera type problems in Clifford analysis. Rev. Mat. Iberoam. 17, 559–585 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    J. Peetre, T. Qian, Möbius covariance of iterated Dirac operators. J. Austral. Math. Soc. (Series A) 56 (1994), 403–414.Google Scholar
  21. 21.
    T. Qian, J. Ryan, Conformal transformations and Hardy spaces arising in Clifford analysis. J. Operator Theory. 35 (1996), 349–372.Google Scholar
  22. 22.
    Xu Zhenyuan and Zhou Chiping, On boundary value problems of Riemann- Hilbert type for monogenic functions in a half space of \({\mathcal{R}^m (m \geq 2)}\) . Complex variables 22 (1993), 181-193.Google Scholar
  23. 23.
    Zhang Zhongxiang, On k-regular functions with values in a universal Clifford algebra. J. Math. Anal. Appl. 315 (2), (2006), 491-505.Google Scholar
  24. 24.
    Zhang Zhongxiang, Some properties of operators in Clifford analysis. Complex Var., elliptic Eq. 52 (6) (2007), 455-473.Google Scholar
  25. 25.
    Zhang Zhongxiang, Möbius transform and Poisson integral representation for monogenic functions. Acta Mathematics Sinica A 56 (4) (2013), 487-504.Google Scholar
  26. 26.
    Zhang Zhongxiang, The Schwarz lemma in Clifford analysis. Proceedings of the American Mathematical Society 142 (4) (2014), 1237–1248.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanP.R. China

Personalised recommendations