Advances in Applied Clifford Algebras

, Volume 24, Issue 2, pp 293–312 | Cite as

Spin Geometry and Image Processing

  • Michel Berthier


We give a survey of applications of spin geometry to image processing. We mainly focus on the problem of defining geometric Fourier transforms for both grey-level and color images. The definitions we propose rely on a spin generalization of the usual notion of character. We consider three possibilities for the actions of these spin characters: by using the spinor representation of grey-level image surfaces; by considering grey-level and color images as sections of associated bundles built first with standard representations and then with spin representations. Examples of applications to low-pass filtering are presented.


Spin Geometry Image Processing Clifford Fourier Transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Batard and M. Berthier: Clifford algebra bundles to multidimensional image segmentation. Adv. Appl. Clifford Algebras 20 (3-4) (2010), pp. 489-516.Google Scholar
  2. 2.
    T. Batard and M. Berthier: Clifford Fourier transform and spinor representation of images. in Quaternion and Clifford Fourier Transforms and Wavelets (E. Hitzer and S.J. Sangwine Eds.), Trends in Mathematics (TIM), Birkhauser, Basel, 2012.Google Scholar
  3. 3.
    T. Batard and M. Berthier: Spinor Fourier Transform for Image Processing. Preprint submitted.Google Scholar
  4. 4.
    T. Batard, M. Berthier and C. Saint Jean: Clifford Fourier Transform for Color Image Processing. In Geometric Algebra Computing for Engineering and Computer Science. E. Bayro Corrochano and G. Scheueurmann Eds, Springer, 2010, pp.135-162.Google Scholar
  5. 5.
    T. Batard, C. Saint Jean and M. Berthier: A Metric Approach to nD Images Edge Detection with Clifford Algebras. J Math Imaging Vis vol. 33 (2009), pp. 296-312.Google Scholar
  6. 6.
    F. Brackx, N. De Schepper and F. Sommen: The Two Dimensional Clifford Fourier Transform. J Math Imaging Vis vol. 26 (2006), pp. 5-18.Google Scholar
  7. 7.
    F. Brackx, N. De Schepper and F. Sommen: The Fourier transform in Clifford analysis. Adv. Imag. Elect. Phys. 156 (2008), pp. 55-203.Google Scholar
  8. 8.
    R. Bujack, G. Scheueurmann and E. Hitzer: A general geometric Fourier transform. In 9th Int. Conf. on Clifford Algebras and their Applications in Mathematical Physics. K. Gürlebeck (ed.). Weimar, Germany, 15-20 July 2011. 19 pages.Google Scholar
  9. 9.
    R. Bujack, G. Scheueurmann and E. Hitzer: A general geometric Fourier transform convolution theorem. To appear in Adv. Appl. Clifford Alg.Google Scholar
  10. 10.
    T. Bülow: Hypercomplex Spectral Signal Representation for the Processing and Analysis of Images. Ph.D Thesis, Kiel, 1999.Google Scholar
  11. 11.
    T. Bülow and G. Sommer: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing Vol. 49 (11) (2001), pp. 2844-2852.Google Scholar
  12. 12.
    Chevalley C.: The Algebraic Theory of Spinors and Clifford Algebras. Springer, New Edn. (1995)Google Scholar
  13. 13.
    S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke: Shearlet Coorbit Spaces and Associated Banach Frames. Appl. Comput. Harmon. Anal. 27 (2009), pp. 195-214.Google Scholar
  14. 14.
    H. De Bie: Clifford algebras, Fourier transforms and quantum mechanics. To appear in Math. Methods Appl. Sci.Google Scholar
  15. 15.
    H. De Bie and Y. Xu: On the Clifford Fourier transform. Int. Math. Res. Not. IMRN No. 22 (2011), pp. 5123-5163.Google Scholar
  16. 16.
    J. Ebling and G. Scheueurmann: Clifford Fourier Transform on Vector Fields. IEEE Transactions on Visualization and Computer Graphics vol. 49 (11) (2001), pp. 2844-2852.Google Scholar
  17. 17.
    T.A. Ell and S. Sangwine: Hypercomplex Fourier Transforms of Color Images IEEE Transactions on Image Processing Vol. 16 (1) (2007), pp. 22-35.Google Scholar
  18. 18.
    M. Felsberg: Low-level Image Processing with the Structure Multivector. Ph.D Thesis, Kiel, 2002.Google Scholar
  19. 19.
    M. Felsberg and G. Sommer: The Monogenic Signal. IEEE Transactions on Signal Processing vol. 49 (12) (2001), pp. 3136-3144.Google Scholar
  20. 20.
    T. Frankel: The Geometry of Physics - An Introduction. Revised Edition, Cambridge University Press.Google Scholar
  21. 21.
    T. Friedrich: On the Spinor Representation of Surfaces in Euclidean 3-Space. Journal of Geometry and Physics 28 (1998), pp. 143-157.Google Scholar
  22. 22.
    Hestenes D., Sobczyk G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)CrossRefMATHGoogle Scholar
  23. 23.
    Lawson H.B., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton, New Jersey (1989)MATHGoogle Scholar
  24. 24.
    P. Lounesto: Clifford Algebras and Spinors. Second Edition, London Mathematical Society Lecture Note Series 286: Cambridge University Press, 2001Google Scholar
  25. 25.
    R. Lukac, K. N. Plataniotis, B. Smolka and A.N. Venetsanopoulos: Vector Operators for Color Image Zooming. IEEE Int. Symp. on Industrial Electronics, 2005.Google Scholar
  26. 26.
    J. Mennesson, C. Saint Jean and L. Mascarilla: New Geometric Fourier Descriptors for Color Image Recognition. IEEE Int. Conf. on Image Processing, 2010.Google Scholar
  27. 27.
    Nakahara M.: Geometry, Topology and Physics. Sec. Edition, Graduate Student Series in Physics, Taylor and Francis (2003)MATHGoogle Scholar
  28. 28.
    M. Postnikov: Leçons de géométrie : groupes et algébres de Lie. MIR, 1985.Google Scholar
  29. 29.
    S. Sangwine and T.A. Ell: Hypercomplex Fourier Transform of Color Images. IEEE Int. Conf. on Image Processing vol. 1 (2001), pp. 137-140.Google Scholar
  30. 30.
    F. Smach, C. Lemaire, J.-P. Gauthier, J. Miteran and M. Atri: Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context. J Math Imaging Vis vol. 30 (1) (2008), pp. 43-71.Google Scholar
  31. 31.
    I.A. Taimanov: Two-dimensional Dirac operator and surface theory. Russian Mathematical Surveys 61 (1) (2006), pp. 79-159.Google Scholar
  32. 32.
    N.J. Vilenkin: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence, Rhode Island (1968).Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.MIA LaboratoryLa Rochelle UniversityLa RochelleFrance

Personalised recommendations