Advances in Applied Clifford Algebras

, Volume 23, Issue 3, pp 535–545 | Cite as

Split Fibonacci Quaternions

  • Mahmut Akyiğit
  • Hidayet Hüda Kösal
  • Murat Tosun


Starting from ideas given by Horadam in [5] , in this paper, we will define the split Fibonacci quaternion, the split Lucas quaternion and the split generalized Fibonacci quaternion. We used the well-known identities related to the Fibonacci and Lucas numbers to obtain the relations between the split Fibonacci, split Lucas and the split generalized Fibonacci quaternions. Moreover, we give Binet formulas and Cassini identities for these quaternions.


Split Fibonacci Quaternion Split Lucas Quaternion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.T. Benjamin, J.J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof. Math. Assoc. of Amercica, 2003.Google Scholar
  2. 2.
    R.A. Dunlap, The Golden Ratio and Fibonacci numbers.World Scientific, 1997.Google Scholar
  3. 3.
    C. Flaut and V. Shpakivskyi, On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions. Adv. Appl. Clifford Algebras, DOI  10.1007/s00006-013-0388-2, 2013.
  4. 4.
    Halici S.: On Fibonacci Quaternions. Adv. Appl. Clifford Algebras 12, 321–327 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Horadam A.F.: A Generalized Fibonacci Sequence. American Math. Monthly 68, 455–459 (1961)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Horadam A.F.: Complex Fibonacci Numbers and Fibonacci Quaternions. Amer. Math. Monthly 70, 289–291 (1963)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Iyer M.R.: Some Results on Fibonacci Quaternions. The Fib. Quarterly 7(2), 201–210 (1969)MathSciNetMATHGoogle Scholar
  8. 8.
    Iyer M.R.: A Note On Fibonacci Quaternion. The Fib. Quarterly 3, 225–229 (1969)MathSciNetGoogle Scholar
  9. 9.
    Koshy T.: Fibonacci and Lucas Numbers with Applications. A Wiley- Interscience publication, USA. (2001)MATHCrossRefGoogle Scholar
  10. 10.
    L. Kula, Bölünmüs Kuaterniyonlar ve Geometrik Uygulamalar. Ph.D Thesis, Ankara University, Institute of Science, Ankara, 2003.Google Scholar
  11. 11.
    Swamy M.N.: On Generalized Fibonacci Quaternions.The Fib. Quarterly. 5, 547–550 (1969)MathSciNetGoogle Scholar
  12. 12.
    Vajda S.: Fibonacci and Lucas Numbers and the Golden Section. Ellis Horwood Limited Publ., England (1989)MATHGoogle Scholar
  13. 13.
    E. Verner, Jr. Hoggatt, Fibonacci and Lucas Numbers. The Fibonacci Association, 1969.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Mahmut Akyiğit
    • 1
  • Hidayet Hüda Kösal
    • 1
  • Murat Tosun
    • 1
  1. 1.Faculty of Arts and Sciences, Department of MathematicsSakarya UniversitySakaryaTurkey

Personalised recommendations