Advances in Applied Clifford Algebras

, Volume 22, Issue 3, pp 873–909 | Cite as

Fiber Bundles, Connections, General Relativity, and the Einstein-Cartan Theory – Part II

  • Miguel Socolovsky


The formalism of tetrads and spin connections is presented, and with it, the Einstein-Cartan (E-C) equations are derived from the usual actions. It is shown how torsion vanishes in the case of pure gravity. Then, the equations in the presence of the Dirac and the Maxwell fields are derived. A possibility of choosing a locally inertial coordinate system in the presence of a totally antisymmetric torsion is proved. We discuss a conflict between torsion and the local gauge invariance of the electromagnetic field. Finally, we study Lorentz and Poincaré gauge invariance of general relativity and the E-C theory.

Mathematics Subject Classification (2010)

53C05 83D05 20G45 


Tetrad formalism Poincaré gauge invariance torsion vs. internal symmetries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aldrovandi and J. G. Pereira, An Introduction to Teleparallel Gravity. Instituto de Física Teórica, UNESP, Sao Paulo, Brazil, 2007.Google Scholar
  2. 2.
    Ali S.A., Cafaro C., Capozziello S., Corda Ch.: On the Poincaré Gauge Theory of Gravitation. Int. J. Theor. Phys. 48, 3426–3448 (2009) arXiv: grqc/0907.0934.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    I. M. Benn, T. Dereli, and R. W. Tucker, (1980). Gauge Field Interactions in Spaces with Arbitrary Torsion. Phys. Letters 96B (1980), 100–104.Google Scholar
  4. 4.
    N. N. Bogoliubov, and D. V. Shirkov, Introduction to the Theory of Quantized Fields. Wiley, New York, 1980, 50–51.Google Scholar
  5. 5.
    Carroll S.: Spacetime and Geometry. An Introduction to General Relativity. Addison Wesley, San Francisco (2004)MATHGoogle Scholar
  6. 6.
    V. de Sabbata, Evidence for torsion in gravity?, in Spin Gravity: Is It Possible to Give an Experimental Basis to Torsion?. International School of Cosmology and Gravitation, XV Course, Erice, Italy, P. G. Bergmann et al., Eds., World Scientific, Singapore, 1997, 52–85.Google Scholar
  7. 7.
    G. D’Olivo, and M. Socolovsky, Poincaré Gauge Invariance of General Relativity and Einstein-Cartan Theory. Electronic Journal of Theoretical Physics - Zacatecas Proc. II (2011), 45–58.Google Scholar
  8. 8.
    L. Fabbri, Private communication (2010).Google Scholar
  9. 9.
    L. Fabbri, On the Principle of Equivalence. In Einstein and Hilbert: Dark Matter, V. V. Dvoeglazov, Ed., Nova Publishers, 2011, arXiv: gr-qc/0905.2541.Google Scholar
  10. 10.
    J. F. T. Giglio and W. Rodrigues Jr., Locally Inertial Reference Frames in Lorentzian and Riemann-Cartan Spacetimes. (2011), arXiv: mathph/ 1111.2206v2.Google Scholar
  11. 11.
    F. Gronwald and F. W. Hehl, On the Gauge Aspects of Gravity. In Proceedings of the International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, Erice, Italy, 1995; P. G. Bergmann et al., Eds., World Scientific, Singapore, 1996; arXiv: gr-qc/9602013.Google Scholar
  12. 12.
    Hammond R.T.: Torsion Gravity. Reports on Progress in Physics 65, 599–649 (2002)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Hartley D.: Normal Frames for Non-Riemannian Connections. Classical and Quantum Gravity 12, L103–L105 (1995)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hayashi K.: The Gauge Theory of the Translation Group and Underlying Geometry. Physics Letters 69B, 441–444 (1977)ADSGoogle Scholar
  15. 15.
    Hayashi K., Nakano T.: Extended Translation Invariance and Associated Gauge Fields. Progress of Theoretical Physics 38, 491–507 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Hayashi K., Shirafuji T.: Gravity from Poincaré Gauge Theory of the Fundamental Particles. I. Progress of Theoretical Physics 64, 866–882 (1980)MathSciNetADSMATHGoogle Scholar
  17. 17.
    Hehl F.W.: On the Kinematics of the Torsion of Space-Time. Foundations of Physics 15, 451–471 (1985)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    F. W. Hehl, Alternative Gravitational Theories in Four Dimensions. In Proceedings of the 8th M. Grossmann Meeting, T. Piran, Ed., World Scientific, Singapore, 1998; arXiv: gr-qc/9712096.Google Scholar
  19. 19.
    Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M.: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48, 393–416 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry. Vol. I, J. Wiley, New York (1963)Google Scholar
  21. 21.
    M. Leston, Simetrías Infinito-Dimensionales en Teorías de Gravedad, Tesis doctoral, FCEN-UBA, Argentina, 2008.Google Scholar
  22. 22.
    M. Leston and M. Socolovsky, The Status of Gravity as a Gauge Theory. In Einstein and Hilbert: Dark Matter, V. V. Dvoeglazov, Ed., 6 Nova Sci. Pub., 2011, 141–156.Google Scholar
  23. 23.
    O’Raifearteigh L.: The Dawning of Gauge Theory. Princeton University Press, Princeton (1997)Google Scholar
  24. 24.
    A. Randono, Gauge Gravity; A Forward-Looking Introduction, (2010), arXiv: gr-qc/1010.5822.Google Scholar
  25. 25.
    M. Socolovsky, Fiber Bundles, Connections, General Relativity, and Einstein- Cartan Theory – Part I. In Special Volume in Memory of Jaime Keller, Advances in Applied Clifford Algebras, R. Abłamowicz and J. Vaz, Eds. (to appear).Google Scholar
  26. 26.
    M. Socolovsky, Locally Inertial Coordinates with Totally Antisymmetric Torsion, (2010), arXiv: gr-qc/1009.3979.Google Scholar
  27. 27.
    A. Trautman, On the Structure of Einstein-Cartan Equations. In Differential Geometry, Symp. Mathematics, Vol. 12 (1973), Academic Press, London, 139– 162.Google Scholar
  28. 28.
    R. Utiyama, Invariant Theoretical Interpretation of Interaction. Physical Review 101 (1956), 1597–1607.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de México Circuito ExteriorMéxicoMéxico

Personalised recommendations