Advances in Applied Clifford Algebras

, Volume 22, Issue 4, pp 1129–1149 | Cite as

Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I. Minkowski Space

  • V. M. Red’kov
  • N. G. Tokarevskaya
  • George J. Spix


The Riemann–Silberstein–Majorana–Oppenheimer approach to the Maxwell electrodynamics in presence of electrical sources and arbitrary media is investigated within the matrix formalism. The symmetry of the matrix Maxwell equation under transformations of the complex rotation SO(3,C) group is demonstrated explicitly. For vacuum, the matrix form includes four real 4 × 4 matrices α b . In the presence of a medium the matrix form requires two sets of 4 × 4 matrices, α b and β b , simple and symmetrical realization of which is given. Minkowski constitutive relations in the case of arbitrary linear media are given in a short algebraic form based on the use of complex 3-vector fields. The matrix formulation in the Esposito’s form based on the use of two electromagnetic 4-vector is studied and discussed.


Minkowski space Maxwell electrodynamics matrix formalism media complex rotation group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorentz H.: Electromagnetic Phenomena in a System Moving with any Velocity less than that of Light. Proc. Royal Acad. Amsterdam. 6, 809–831 (1904)Google Scholar
  2. 2.
    Poincaré H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris. 140, 1504–1508 (1905)MATHGoogle Scholar
  3. 3.
    Poincaré H.: Sur la Dynamique de l’Électron. Rendiconti del Circolo Matematico di Palermo. 21, 129–175 (1906)MATHCrossRefGoogle Scholar
  4. 4.
    Einstein A.: Zur Elektrodynamik der bewegten Körper. Annalen der Physik. 17, 891–921 (1905)ADSMATHCrossRefGoogle Scholar
  5. 5.
    H. Minkowski, Die Grundlagen für die electromagnetischen Vorgänge in bewegten Kërpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse. (1908), 53-111; Reprint in Math. Ann. 68, (1910), 472-525.Google Scholar
  6. 6.
    Silberstein L.: Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Ann. Phys. (Leiptzig) 22, 579–586 (1907)ADSMATHCrossRefGoogle Scholar
  7. 7.
    Silberstein L.: Nachtrag zur Abhandlung Über elektromagnetische Grundgleichungen in bivektorieller Behandlung. Ann. der Phys. 24, 783–784 (1907)ADSCrossRefGoogle Scholar
  8. 8.
    Silberstein. L.: The Theory of Relativity. Macmillan, London (1914)Google Scholar
  9. 9.
    Marcolongo R.: Les Transformations de Lorentz et les Équations de l’Électrodynamique. Annales de la Faculté des Sciences de Toulouse. 4, 429–468 (1912)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Bateman, The Mathematical Analysis of Electrical and Optical Wave- Motion on the Basis of Maxwells Equations. Cambridge University Press (1915).Google Scholar
  11. 11.
    K. Lanczos, Die Funktionentheoretischen Beziehungen der Maxwellschen Aethergleichungen - Ein Beitrag zur Relativitätsund Elektronentheorie. Verlagsbuchhandlung Josef Nëmeth. Budapest (1919), 80 pages.Google Scholar
  12. 12.
    Gordon W.: Zur Lichtfortpanzungnach der Relativitätstheorie. Ann. Phys. (Leipzig) 72, 421–456 (1923)ADSMATHGoogle Scholar
  13. 13.
    Mandelstam L., Tamm I.: Elektrodynamik der anisotropen Medien und der speziallen Relativitatstheorie. Math. Annalen. 95, 154–160 (1925)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tamm I.: Electrodynamics of an Anisotropic Medium and the Special Theory of Relativity. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 56, 248 (1924)Google Scholar
  15. 15.
    Tamm I.: Crystal Optics in the Theory of Relativity and its Relationship to the Geometry of a Biquadratic form. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 57, 1 (1925)Google Scholar
  16. 16.
    Dirac P.A.M.: The Quantum Theory of the Electron. Proc. Roy. Soc. A117, 610–624 (1928)ADSGoogle Scholar
  17. 17.
    Dirac P.A.M.: The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. A118, 351–361 (1928)ADSGoogle Scholar
  18. 18.
    Möglich F.: Zur Quantentheorie des rotierenden Elektrons. Zeit. Phys. 48, 852–867 (1928)ADSMATHCrossRefGoogle Scholar
  19. 19.
    Ivanenko D., Landau L.: Zur theorie des magnetischen electrons. Zeit. Phys. 48, 340–348 (1928)ADSCrossRefGoogle Scholar
  20. 20.
    Neumann J.: Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelectrons. Zeit. Phys. 48, 868–881 (1929)ADSCrossRefGoogle Scholar
  21. 21.
    B. van der Waerden, Spinoranalyse. Nachr. Akad. Wiss. Gottingen. Math. Physik. Kl. (1929), 100-109 .Google Scholar
  22. 22.
    Juvet G.: Opérateurs de Dirac et Équations de Maxwell. Comm. Math. Helv. 2, 225–235 (1930)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Laporte O., Uhlenbeck G.: Application of Spinor Analysis to the Maxwell and Dirac Equations. Phys. Rev. 37, 1380–1397 (1931)ADSCrossRefGoogle Scholar
  24. 24.
    Yu. Rumer, Spinor Analysis. Moscow 1936, (in Russian).Google Scholar
  25. 25.
    E. Majorana, Scientific Papers, Unpublished, Deposited at the “Domus Galileana”. Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16; 17, p. 83, 159.Google Scholar
  26. 26.
    Oppenheimer J.: Note on Light Quanta and the Electromagnetic Field. Phys. Rev. 38, 725–746 (1931)ADSCrossRefGoogle Scholar
  27. 27.
    H. Weber, Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig 1901. P. 348.Google Scholar
  28. 28.
    Bialynicki-Birula I.: On the Wave Function of the Photon. Acta Phys. Polon. 86, 97–116 (1994)Google Scholar
  29. 29.
    Bialynicki-Birula I.: Photon Wave Function. Progress in Optics. 36, 248–294 (1996) [arXiv:quant-ph/050820]CrossRefGoogle Scholar
  30. 30.
    Kurşunoĝlu B.: Complex Orthogonal and Antiorthogonal Representation of Lorentz Group. J. Math. Phys. 2, 22–32 (1961)ADSMATHCrossRefGoogle Scholar
  31. 31.
    Macfarlane A.: On the Restricted Lorentz Group and Groups Homomorphically Related to it. J. Math. Phys. 3, 1116–1129 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Macfarlane A.: Dirac Matrices and the Dirac Matrix Description of Lorentz Transformations. Commun. Math. Phys. 2, 133–146 (1966)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    F. Fedorov, The Lorentz Group. Moscow, 1979.Google Scholar
  34. 34.
    Stratton J.: Electromagnetic Theory. McGraw-Hill, New York (1941)MATHGoogle Scholar
  35. 35.
    W. Panofsky, M. Phillips, Classical Electricity and Magnetics. Addison- Wesley Publishing Company, 1962.Google Scholar
  36. 36.
    Jackson J.: Classical Electrodynamics. Wiley, New Yor (1975)MATHGoogle Scholar
  37. 37.
    Esposito S.: Covariant Majorana Formulation of Electrodynamics. Found. Phys. 28, 231–244 (1998) [arXiv:hep-th/9704144]MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ivezić T.: True Transformations Relativity and Electrodynamics. Found. Phys. 31, 1139–1183 (2001)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ivezić T.: The Proof that Maxwell’s Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations. The new Lorentz-Invariant Field Equations. Found. Phys. 35, 1585–1615 (2005)MATHGoogle Scholar
  40. 40.
    Ivezić T.: Lorentz Invariant Majorana Formulation of the Field Equations and Dirac-like Equation for the Free Photon. EJTP (Electronic Journal of Theoretical Physics) 3, 131–142 (2006)MATHGoogle Scholar
  41. 41.
    Nüñez Yépez H., Salas Brito A., Vargas C.: Electric and Magnetic Four- Vectors in Classical Electrodynamics. Revista Mexicana de Fisica 34, 636 (1988)Google Scholar
  42. 42.
    de Broglie L.: L’équation d’Ondes du Photon. C. R. Acad. Sci. Paris 199, 445–448 (1934)Google Scholar
  43. 43.
    de Broglie L., Winter M.: Sur le Spin du Photon. C. R. Acad. Sci. Paris 199, 813–816 (1934)Google Scholar
  44. 44.
    Mercier A.: Expression des équations de l’Électromagnétisme au Moyen des Nombres de Clifford. Thèse de l’Université de Genève. No 953; Arch. Sci. Phys. Nat. Genève 17, 1–34 (1935)Google Scholar
  45. 45.
    G. Petiau, University of Paris. Thesis (1936); Acad. Roy. de Belg. Classe Sci. Mem. 2 (1936).Google Scholar
  46. 46.
    Proca A.: Sur les Equations Fondamentales des Particules Élémentaires. C. R. Acad. Sci. Paris 202, 1490–1492 (1936)Google Scholar
  47. 47.
    Duffin R.: On the Characteristic Matrices of Covariant Systems. Phys. Rev. 54, 1114 (1938)ADSCrossRefGoogle Scholar
  48. 48.
    de Broglie L.: Sur un Cas de Réductibilité en Mécanique Ondulatoire des Particules de Spin 1. C. R. Acad. Sci. Paris 208, 1697–1700 (1939)Google Scholar
  49. 49.
    Kemmer N.: The Particle Aspect of Meson Theory. Proc. Roy. Soc. London. A 173, 91–116 (1939)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Bhabha H.: Classical Theory of Meson. Proc. Roy. Soc. London. A 172, 384 (1939)ADSCrossRefGoogle Scholar
  51. 51.
    Belinfante F.: The Undor Equation of the Meson Field. Physica. 6, 870 (1939)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Belinfante F.: Spin of Mesons. Physica. 6, 887–898 (1939)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Taub A.: Spinor Equations for the Meson and their Solution when no Field is Present. Phys. Rev. 56, 799–810 (1939)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    de Broglie L.: Champs Réels et Champs Complexes en Théorie Électromagnétique Quantique du Rayonnement. C. R. Acad. Sci. Paris. 211, 41–44 (1940)Google Scholar
  55. 55.
    Schrödinger E.: Maxwell’s and Dirac’s Equations in Expanding Universe. Proc. Roy. Irish. Acad. A 46, 25 (1940)MATHGoogle Scholar
  56. 56.
    S. Sakata, M. Taketani, On the Wave Equation of the Meson. Proc. Phys. Math. Soc. Japan. 22 (1940), 757-70; Reprinted in: Suppl. Progr. Theor. Phys. 22 (1955), 84.Google Scholar
  57. 57.
    M. Tonnelat, Sur la Théorie du Photon dans un Espace de Riemann. Ann. Phys. N.Y. 1941. Vol. 15. P. 144.Google Scholar
  58. 58.
    Schrödinger E.: Pentads, Tetrads, and Triads of Meson matrices. Proc. Roy. Irish. Acad. A. 48, 135–146 (1943)MATHGoogle Scholar
  59. 59.
    Schrödinger E.: Systematics of Meson Matrices. Proc. Roy. Irish. Acad. 49, 29 (1943)MATHGoogle Scholar
  60. 60.
    Kemmer N.: The Algebra of Meson Matrices. Proc. Camb. Phil. Soc. 39, 189–196 (1943)MathSciNetADSMATHCrossRefGoogle Scholar
  61. 61.
    Heitler W.: On the Particle Equation of the Meson. Proc. Roy. Irish. Acad. 49, 1 (1943)MathSciNetMATHGoogle Scholar
  62. 62.
    A. Einstein, V. Bargmann, Bivector Fields. I, II. Annals of Math. 45 (1944), 1-14, 15-23.Google Scholar
  63. 63.
    Proca A.: Sur les Équations Relativistes des Particules Élémentaires. C. R. Acad. Sci. Paris. 223, 270–272 (1946)MathSciNetGoogle Scholar
  64. 64.
    Harish-Chandra, On the Algebra of the Meson Matrices. Proc. Camb. Phil. Soc. 43, 414 (1946)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Yarish-Chandra, The Correspondence Between the Particle and Wave Aspects of the Meson and the Photon. Proc. Roy. Soc. London. A 186, 502–525 (1946)ADSCrossRefGoogle Scholar
  66. 66.
    B. Hoffmann, The Vector Meson Field and Projective Relativity. Phys. Rev. (1947), 72 (1947), 458.Google Scholar
  67. 67.
    Utiyama R.: On the Interaction of Mesons with the Gravitational Field. Progr. in Theor. Phys. 2, 38–62 (1947)MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Mercier A.: Sur les Fondements de l’Électrodynamique Classique (Méthode Axiomatique). Arch. Sci. Phys. Nat. Genà àve. 2, 584–588 (1949)MathSciNetGoogle Scholar
  69. 69.
    Imaeda K.: Linearization of Minkowski Space and Five-Dimensional Space. Progress of Theor. Phys. 5, 133–134 (1950)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Fujiwara I.: On the Duffin-Kemmer Algebra. Progr. Theor. Phys. 10, 589–616 (1953)ADSMATHCrossRefGoogle Scholar
  71. 71.
    Gürsey F.: Dual Invariance of Maxwell’s Tensor. Rev. Fac. Sci. Istanbul. A 19, 154–160 (1954)MATHGoogle Scholar
  72. 72.
    Gupta S.: Gravitation and Electromagnetism. Phys. Rev. 96, 1683–1685 (1954)MathSciNetADSMATHCrossRefGoogle Scholar
  73. 73.
    A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Électromagnetisme. Paris. 1955.Google Scholar
  74. 74.
    Ohmura T.: A New Formulation on the Electromagnetic Field. Prog. Theor. Phys. 16, 684–685 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  75. 75.
    Borgardt A.: Matrix Aspects of the Boson Theory. Sov. Phys. JETP. 30, 334–341 (1956)MathSciNetGoogle Scholar
  76. 76.
    Fedorov F.: On the Reduction of Wave Equations for Spin-0 and Spin-1 to the Hamiltonian Form. JETP. 4, 139–141 (1957)Google Scholar
  77. 77.
    Kuohsien T.: Sur les Theories Matricielles du Photon. C. R. Acad. Sci. Paris 245, 141–144 (1957)MathSciNetGoogle Scholar
  78. 78.
    Bludman S.: Some Theoretical Consequences of a Particle Having Mass Zero. Phys. Rev. 107, 1163–1168 (1957)MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Good R. Jr.: Particle Aspect of the Electromagnetic Field equations. Phys. Rev. 105, 1914–1919 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  80. 80.
    Moses H.: A Spinor Representation of Maxwell Equations. Nuovo Cimento Suppl. 1, 1–18 (1958)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Lomont J.: Dirac-Like Wave Equations for Particles of Zero Rest mass and their Quantization. Phys. Rev. 11, 1710–1716 (1958)MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Borgardt A.: Wave Equatons for a Photon. JETF. 34, 1323–1325 (1958)Google Scholar
  83. 83.
    Moses E.: Solutions of Maxwell’s Equations in Terms of a Spinor Notation: the Direct and Inverse Problems. Phys. Rev. 113, 1670–1679 (1959)MathSciNetADSMATHCrossRefGoogle Scholar
  84. 84.
    Adel da Silveira: Kemmer Wave Equation in Riemann Space. J. Math. Phys. 1, 489–491 (1960)ADSMATHCrossRefGoogle Scholar
  85. 85.
    Kemmer N.: On the Theory of Particles of Spin 1. Helv. Phys. Acta. 33, 829–838 (1960)MathSciNetMATHGoogle Scholar
  86. 86.
    Hjalmars S.: Wave Equations for Scalar and Vector Particles in Gravitational Fields. J. Math. Phys. 2, 663–666 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  87. 87.
    Kibble T.: Lorentz Invariance and the Gravitational Field. J. Math. Phys. 2, 212–221 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  88. 88.
    E. Post, Formal structure of Electrodynamics. General Covariance and Electromagnetics. Amsterdam. 1962.Google Scholar
  89. 89.
    Bogush A., Fedorov F.: On Properties of the Duffin-Kemmer Matrices. Doklady AN BSSR 6, 81–85 (1962) (in Russian)MATHGoogle Scholar
  90. 90.
    Sachs M., Schwebel S.: On Covariant Formulations of the Maxwell-Lorentz Theory of Electromagnetism. J. Math. Phys. 3, 843–848 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  91. 91.
    J. Ellis, Maxwell’s Equations and Theories of Maxwell Form. Ph.D. thesis. University of London 1964. 417 pages.Google Scholar
  92. 92.
    Oliver L.: Hamiltonian for a Kemmer Particle in an Electromagnetic Field. Anales de Fisica 64, 407 (1968)Google Scholar
  93. 93.
    Beckers J., Pirotte C.: Vectorial Meson Equations in Relation to Photon Description. Physica 39, 205 (1968)ADSCrossRefGoogle Scholar
  94. 94.
    Casanova G.: Particules Neutre de Spin 1. C. R. Acad. Sci. Paris. A 268, 673–676 (1969)Google Scholar
  95. 95.
    Carmeli M.: Group Analysis of Maxwell Equations. J. Math. Phys. 10, 1699–1703 (1969)MathSciNetADSCrossRefGoogle Scholar
  96. 96.
    A. Bogush, To the Theory of Vector Particles. Preprint of IF AN BSSR, (1971).Google Scholar
  97. 97.
    Lord E.: Six-Dimensional Formulation of Meson Equations. Int. J. Theor. Phys. 5, 339–348 (1972)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Moses H.: Photon Wave Functions and the Exact Electromagnetic Matrix eEements for Hydrogenic Atoms. Phys. Rev. A 8, 1710–1721 (1973)MathSciNetADSCrossRefGoogle Scholar
  99. 99.
    Weingarten D.: Complex Symmetries of Electrodynamics. Ann. Phys. 76, 510–548 (1973)MathSciNetADSCrossRefGoogle Scholar
  100. 100.
    Mignani R., Recami E., Baldo M.: About a Dirac-Like Equation for the Photon, According to E. Majorana. Lett. Nuovo Cimento 11, 568–572 (1974)CrossRefGoogle Scholar
  101. 101.
    Newman E.: Maxwell Equations and Complex Minkowski Space. J. Math. Phys. 14, 102–107 (1973)ADSCrossRefGoogle Scholar
  102. 102.
    Frankel T.: Maxwell’s Equations. Amer. Math. Mon. 81, 343–349 (1974)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    B. Bolotowskij, C. Stoliarov, Contamporain State of Electrodynamics of Moving Medias (Unlimited Medias). Eistein collection. Moskow. (1974), 179-275.Google Scholar
  104. 104.
    Edmonds J.: Comment on the Dirac-Like Equation for the Photon. Nuovo Cim. Lett. 13, 185–186 (1975)CrossRefGoogle Scholar
  105. 105.
    V. I. Strazhev, L. M. Tomil’chik, Electrodynamics with Magnetic Charge. Minsk. 1975.Google Scholar
  106. 106.
    Da Silveira A.: Invariance algebras of the Dirac and Maxwell Equations. Nouvo Cim. A 56, 385–395 (1980)MathSciNetADSCrossRefGoogle Scholar
  107. 107.
    Jena P., Naik P., Pradhan T.: Photon as the Zero-Mass Limit of DKP Field. J. Phys. A 13, 2975–2978 (1980)MathSciNetADSCrossRefGoogle Scholar
  108. 108.
    Venuri G.A: Geometrical Formulation of eEectrodynamics. Nuovo Cim. A 65, 64–76 (1981)ADSCrossRefGoogle Scholar
  109. 109.
    Chow T.: A Dirac-Like Equation for the Photon. J. Phys. A 14, 2173–2174 (1981)ADSCrossRefGoogle Scholar
  110. 110.
    V. I. Fushchich, A. G. Nikitin. Symmetries of Maxwell’s Equations. Kiev, 1983; Kluwer. Dordrecht. 1987.Google Scholar
  111. 111.
    Cook R.: Photon Dynamics. Phys. Rev. A 25, 2164–2167 (1982)ADSCrossRefGoogle Scholar
  112. 112.
    R. Cook R., Lorentz Covariance of Photon Dynamics. Phys. Rev. A 26 (1982), 2754-2760.Google Scholar
  113. 113.
    Giannetto E.: A Majorana-Oppenheimer Formulation of Quantum Electrodynamics. Lett. Nuovo Cim. 44, 140–144 (1985)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Kidd R., Ardini J., Anton A.: Evolution of the Modern Photon. Am. J. Phys. 57, 27 (1989)MathSciNetADSCrossRefGoogle Scholar
  115. 115.
    Recami E.: Possible Physical Meaning of the Photon Wave-Function, According to Ettore Majorana. in Hadronic Mechanics and Non-Potential Interactions, pp. 231–238. Nova Sc. Pub., New York (1990)Google Scholar
  116. 116.
    Krivsky I., Simulik V.: Foundations of Quantum Electrodynamics in Field Strengths Terms. Naukova Dumk, Kiev (1992)Google Scholar
  117. 117.
    Hillion P.: Spinor Electromagnetism in Isotropic Chiral Media. Adv. Appl. Clifford Alg. 3, 107–120 (1993)MathSciNetMATHGoogle Scholar
  118. 118.
    Baylis W.E.: Light Polarization: A geometricalgebra Approach. Amer. J. Phys. 61, 534–545 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  119. 119.
    Inagaki T.: Quantum-Mechanical Approach to a Free Photon. Phys. Rev. A 49, 2839–2843 (1994)ADSCrossRefGoogle Scholar
  120. 120.
    Sipe J.: Photon Wave Functions. Phys. Rev. A. 52, 1875–1883 (1995)ADSCrossRefGoogle Scholar
  121. 121.
    Ghose P.: Relativistic Quantum Mechanics of Spin-0 and Spin-1 Bosons. Found. Phys. 26, 1441–1455 (1996)MathSciNetADSCrossRefGoogle Scholar
  122. 122.
    Gersten A.: Maxwell Equations as the One-Photon Quantum Equation. Found. of Phys. Lett. 12, 291–298 (1998) [arXiv:quant-ph/9911049]MathSciNetCrossRefGoogle Scholar
  123. 123.
    Dvoeglazov V.: Speculations on the Neutrino Theory of Light. Annales de la Fondation Louis de Broglie 24, 111–127 (1999)Google Scholar
  124. 124.
    Dvoeglazov V.: Historical Note on Relativistic Theories of Electromagnetism. Apeiron. 5, 69–88 (1998)Google Scholar
  125. 125.
    Dvoeglazov V.: Generalized Maxwell and Weyl Equations for Massless Particles. Rev. Mex. Fis. 49, 99–103 (2003) [arXiv:math-ph/0102001]Google Scholar
  126. 126.
    Gsponer A.: On the “equivalence” of the Maxwell and Dirac Equations. Int. J. Theor. Phys. 41, 689–694 (2002) [arXiv:mathph/0201053]MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Varlamov V.: About Algebraic Foundations of Majorana-Oppenheimer Quantum Electrodynamics and de Broglie-Jordan Neutrino Theory of Light. Ann. Fond. L. de Broglie 27, 273–286 (2003)MathSciNetGoogle Scholar
  128. 128.
    Khan S.: Maxwell Optics: I. An exact matrix Representation of the Maxwell Equations in a Medium. Phys. Scripta 71, 440–442 (2005) arXiv:physics/0205083MathSciNetADSMATHCrossRefGoogle Scholar
  129. 129.
    S. Khan, Maxwell Optics: II. An Exact Formalism. arXiv:physics/0205084.Google Scholar
  130. 130.
    S. Khan, Maxwell Optics: II. Applications. arXiv:physics/0205085.Google Scholar
  131. 131.
    S. Donev, Complex Structures in Electrodynamics. arXiv:math-ph/0106008.Google Scholar
  132. 132.
    Donev S.: From Electromagnetic Duality to Extended Electrodynamics. Annales Fond. L. de Broglie 29, 375–392 (2004) [arXiv:hep-th/0101137]MathSciNetGoogle Scholar
  133. 133.
    Donev S., Tashkova M.: Extended Electrodynamics: A Brief Review. Proc. R. Soc. Lond. A 450, 281 (1995) [arXiv:hep-th/0403244]MathSciNetADSMATHCrossRefGoogle Scholar
  134. 134.
    Armour Rollin S. Jr.: Spin-1/2 Maxwell fields., Found. Phys. 34, 815–842 (2004)MathSciNetMATHGoogle Scholar
  135. 135.
    I. Bialynicki-Birula, Z. Bialynicka-Birula, Beams of Electromagnetic Radiation Carrying Angular Momentum: The Riemann-Silberstein Vector and the Classical-Quantum Correspondence. arXiv:quant-ph/0511011.Google Scholar
  136. 136.
    W. A. Rodrigues, de Oliveira E. Capelas. The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics 722, Springer (2007).Google Scholar
  137. 137.
    Ovsiyuk E.M., Red’kov V.M.: Spherical waves of spin-1 particle in anti de Sitter space-time. Acta Physica Polonica. B. 41, 1247–1276 (2010)MathSciNetGoogle Scholar
  138. 138.
    Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell equations in complex form of Majorana-Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ricerche di matematica. 59, 59–96 (2010)MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Campolattaro A.A.: New spinor representation of the Maxwell equations. I: Generalities. Int. J. Theor. Phys. 19, 99–126 (1980)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Campolattaro A.A.: New spinor representation of the Maxwell equations. II: Algebraic properties. Int. J. Theor. Phys. 19, 127–138 (1980)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. I: Dirac equation for the free electron. Int. J. Theor. Phys. 20, 141–155 (1990)MathSciNetCrossRefGoogle Scholar
  142. 142.
    Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. II: Generalized Dirac equation. Int. J. Theor. Phys. 29, 477–482 (1990)MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    Figueiredo V.L., de Capelas Oliveira E., Rodrigues W.A.: Covariant, algebraic, and operator spinors. Int. J. Theor. Phys. 29, 371–395 (1990)MATHCrossRefGoogle Scholar
  144. 144.
    Vaz J., Rodrigues W.: Equivalence of Dirac and Maxwell equations and quantum mechanics. Int. J. Theor. Phys. 32, 945–959 (1993)MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    Rodrigues W., Vaz J.: From Electromagnetism to Relativistic Quantum Mechanics. Found. Phys. 28, 789–814 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • V. M. Red’kov
    • 1
  • N. G. Tokarevskaya
    • 2
  • George J. Spix
    • 3
  1. 1.B.I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Belorussian State Economical UniversityMinskBelarus
  3. 3.BSEE Illinois Institute of TechnologyUrbanaUSA

Personalised recommendations