Skip to main content
Log in

Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I. Minkowski Space

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The Riemann–Silberstein–Majorana–Oppenheimer approach to the Maxwell electrodynamics in presence of electrical sources and arbitrary media is investigated within the matrix formalism. The symmetry of the matrix Maxwell equation under transformations of the complex rotation SO(3,C) group is demonstrated explicitly. For vacuum, the matrix form includes four real 4 × 4 matrices α b. In the presence of a medium the matrix form requires two sets of 4 × 4 matrices, α b and β b, simple and symmetrical realization of which is given. Minkowski constitutive relations in the case of arbitrary linear media are given in a short algebraic form based on the use of complex 3-vector fields. The matrix formulation in the Esposito’s form based on the use of two electromagnetic 4-vector is studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lorentz H.: Electromagnetic Phenomena in a System Moving with any Velocity less than that of Light. Proc. Royal Acad. Amsterdam. 6, 809–831 (1904)

    Google Scholar 

  2. Poincaré H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris. 140, 1504–1508 (1905)

    MATH  Google Scholar 

  3. Poincaré H.: Sur la Dynamique de l’Électron. Rendiconti del Circolo Matematico di Palermo. 21, 129–175 (1906)

    Article  MATH  Google Scholar 

  4. Einstein A.: Zur Elektrodynamik der bewegten Körper. Annalen der Physik. 17, 891–921 (1905)

    Article  ADS  MATH  Google Scholar 

  5. H. Minkowski, Die Grundlagen für die electromagnetischen Vorgänge in bewegten Kërpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse. (1908), 53-111; Reprint in Math. Ann. 68, (1910), 472-525.

  6. Silberstein L.: Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Ann. Phys. (Leiptzig) 22, 579–586 (1907)

    Article  ADS  MATH  Google Scholar 

  7. Silberstein L.: Nachtrag zur Abhandlung Über elektromagnetische Grundgleichungen in bivektorieller Behandlung. Ann. der Phys. 24, 783–784 (1907)

    Article  ADS  Google Scholar 

  8. Silberstein. L.: The Theory of Relativity. Macmillan, London (1914)

    Google Scholar 

  9. Marcolongo R.: Les Transformations de Lorentz et les Équations de l’Électrodynamique. Annales de la Faculté des Sciences de Toulouse. 4, 429–468 (1912)

    Article  MathSciNet  Google Scholar 

  10. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave- Motion on the Basis of Maxwells Equations. Cambridge University Press (1915).

  11. K. Lanczos, Die Funktionentheoretischen Beziehungen der Maxwellschen Aethergleichungen - Ein Beitrag zur Relativitätsund Elektronentheorie. Verlagsbuchhandlung Josef Nëmeth. Budapest (1919), 80 pages.

  12. Gordon W.: Zur Lichtfortpanzungnach der Relativitätstheorie. Ann. Phys. (Leipzig) 72, 421–456 (1923)

    ADS  MATH  Google Scholar 

  13. Mandelstam L., Tamm I.: Elektrodynamik der anisotropen Medien und der speziallen Relativitatstheorie. Math. Annalen. 95, 154–160 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tamm I.: Electrodynamics of an Anisotropic Medium and the Special Theory of Relativity. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 56, 248 (1924)

    Google Scholar 

  15. Tamm I.: Crystal Optics in the Theory of Relativity and its Relationship to the Geometry of a Biquadratic form. Zh. Russ. Fiz.-Khim. O-va Chast. Fiz. 57, 1 (1925)

    Google Scholar 

  16. Dirac P.A.M.: The Quantum Theory of the Electron. Proc. Roy. Soc. A117, 610–624 (1928)

    ADS  Google Scholar 

  17. Dirac P.A.M.: The Quantum Theory of the Electron. Part II. Proc. Roy. Soc. A118, 351–361 (1928)

    ADS  Google Scholar 

  18. Möglich F.: Zur Quantentheorie des rotierenden Elektrons. Zeit. Phys. 48, 852–867 (1928)

    Article  ADS  MATH  Google Scholar 

  19. Ivanenko D., Landau L.: Zur theorie des magnetischen electrons. Zeit. Phys. 48, 340–348 (1928)

    Article  ADS  Google Scholar 

  20. Neumann J.: Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelectrons. Zeit. Phys. 48, 868–881 (1929)

    Article  ADS  Google Scholar 

  21. B. van der Waerden, Spinoranalyse. Nachr. Akad. Wiss. Gottingen. Math. Physik. Kl. (1929), 100-109 .

  22. Juvet G.: Opérateurs de Dirac et Équations de Maxwell. Comm. Math. Helv. 2, 225–235 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laporte O., Uhlenbeck G.: Application of Spinor Analysis to the Maxwell and Dirac Equations. Phys. Rev. 37, 1380–1397 (1931)

    Article  ADS  Google Scholar 

  24. Yu. Rumer, Spinor Analysis. Moscow 1936, (in Russian).

  25. E. Majorana, Scientific Papers, Unpublished, Deposited at the “Domus Galileana”. Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16; 17, p. 83, 159.

  26. Oppenheimer J.: Note on Light Quanta and the Electromagnetic Field. Phys. Rev. 38, 725–746 (1931)

    Article  ADS  Google Scholar 

  27. H. Weber, Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig 1901. P. 348.

  28. Bialynicki-Birula I.: On the Wave Function of the Photon. Acta Phys. Polon. 86, 97–116 (1994)

    Google Scholar 

  29. Bialynicki-Birula I.: Photon Wave Function. Progress in Optics. 36, 248–294 (1996) [arXiv:quant-ph/050820]

    Article  Google Scholar 

  30. Kurşunoĝlu B.: Complex Orthogonal and Antiorthogonal Representation of Lorentz Group. J. Math. Phys. 2, 22–32 (1961)

    Article  ADS  MATH  Google Scholar 

  31. Macfarlane A.: On the Restricted Lorentz Group and Groups Homomorphically Related to it. J. Math. Phys. 3, 1116–1129 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Macfarlane A.: Dirac Matrices and the Dirac Matrix Description of Lorentz Transformations. Commun. Math. Phys. 2, 133–146 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. F. Fedorov, The Lorentz Group. Moscow, 1979.

  34. Stratton J.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  35. W. Panofsky, M. Phillips, Classical Electricity and Magnetics. Addison- Wesley Publishing Company, 1962.

  36. Jackson J.: Classical Electrodynamics. Wiley, New Yor (1975)

    MATH  Google Scholar 

  37. Esposito S.: Covariant Majorana Formulation of Electrodynamics. Found. Phys. 28, 231–244 (1998) [arXiv:hep-th/9704144]

    Article  MathSciNet  Google Scholar 

  38. Ivezić T.: True Transformations Relativity and Electrodynamics. Found. Phys. 31, 1139–1183 (2001)

    Article  MathSciNet  Google Scholar 

  39. Ivezić T.: The Proof that Maxwell’s Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations. The new Lorentz-Invariant Field Equations. Found. Phys. 35, 1585–1615 (2005)

    MATH  Google Scholar 

  40. Ivezić T.: Lorentz Invariant Majorana Formulation of the Field Equations and Dirac-like Equation for the Free Photon. EJTP (Electronic Journal of Theoretical Physics) 3, 131–142 (2006)

    MATH  Google Scholar 

  41. Nüñez Yépez H., Salas Brito A., Vargas C.: Electric and Magnetic Four- Vectors in Classical Electrodynamics. Revista Mexicana de Fisica 34, 636 (1988)

    Google Scholar 

  42. de Broglie L.: L’équation d’Ondes du Photon. C. R. Acad. Sci. Paris 199, 445–448 (1934)

    Google Scholar 

  43. de Broglie L., Winter M.: Sur le Spin du Photon. C. R. Acad. Sci. Paris 199, 813–816 (1934)

    Google Scholar 

  44. Mercier A.: Expression des équations de l’Électromagnétisme au Moyen des Nombres de Clifford. Thèse de l’Université de Genève. No 953; Arch. Sci. Phys. Nat. Genève 17, 1–34 (1935)

    Google Scholar 

  45. G. Petiau, University of Paris. Thesis (1936); Acad. Roy. de Belg. Classe Sci. Mem. 2 (1936).

  46. Proca A.: Sur les Equations Fondamentales des Particules Élémentaires. C. R. Acad. Sci. Paris 202, 1490–1492 (1936)

    Google Scholar 

  47. Duffin R.: On the Characteristic Matrices of Covariant Systems. Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  48. de Broglie L.: Sur un Cas de Réductibilité en Mécanique Ondulatoire des Particules de Spin 1. C. R. Acad. Sci. Paris 208, 1697–1700 (1939)

    Google Scholar 

  49. Kemmer N.: The Particle Aspect of Meson Theory. Proc. Roy. Soc. London. A 173, 91–116 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  50. Bhabha H.: Classical Theory of Meson. Proc. Roy. Soc. London. A 172, 384 (1939)

    Article  ADS  Google Scholar 

  51. Belinfante F.: The Undor Equation of the Meson Field. Physica. 6, 870 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  52. Belinfante F.: Spin of Mesons. Physica. 6, 887–898 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  53. Taub A.: Spinor Equations for the Meson and their Solution when no Field is Present. Phys. Rev. 56, 799–810 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  54. de Broglie L.: Champs Réels et Champs Complexes en Théorie Électromagnétique Quantique du Rayonnement. C. R. Acad. Sci. Paris. 211, 41–44 (1940)

    Google Scholar 

  55. Schrödinger E.: Maxwell’s and Dirac’s Equations in Expanding Universe. Proc. Roy. Irish. Acad. A 46, 25 (1940)

    MATH  Google Scholar 

  56. S. Sakata, M. Taketani, On the Wave Equation of the Meson. Proc. Phys. Math. Soc. Japan. 22 (1940), 757-70; Reprinted in: Suppl. Progr. Theor. Phys. 22 (1955), 84.

  57. M. Tonnelat, Sur la Théorie du Photon dans un Espace de Riemann. Ann. Phys. N.Y. 1941. Vol. 15. P. 144.

  58. Schrödinger E.: Pentads, Tetrads, and Triads of Meson matrices. Proc. Roy. Irish. Acad. A. 48, 135–146 (1943)

    MATH  Google Scholar 

  59. Schrödinger E.: Systematics of Meson Matrices. Proc. Roy. Irish. Acad. 49, 29 (1943)

    MATH  Google Scholar 

  60. Kemmer N.: The Algebra of Meson Matrices. Proc. Camb. Phil. Soc. 39, 189–196 (1943)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Heitler W.: On the Particle Equation of the Meson. Proc. Roy. Irish. Acad. 49, 1 (1943)

    MathSciNet  MATH  Google Scholar 

  62. A. Einstein, V. Bargmann, Bivector Fields. I, II. Annals of Math. 45 (1944), 1-14, 15-23.

  63. Proca A.: Sur les Équations Relativistes des Particules Élémentaires. C. R. Acad. Sci. Paris. 223, 270–272 (1946)

    MathSciNet  Google Scholar 

  64. Harish-Chandra, On the Algebra of the Meson Matrices. Proc. Camb. Phil. Soc. 43, 414 (1946)

    Article  MathSciNet  ADS  Google Scholar 

  65. Yarish-Chandra, The Correspondence Between the Particle and Wave Aspects of the Meson and the Photon. Proc. Roy. Soc. London. A 186, 502–525 (1946)

    Article  ADS  Google Scholar 

  66. B. Hoffmann, The Vector Meson Field and Projective Relativity. Phys. Rev. (1947), 72 (1947), 458.

  67. Utiyama R.: On the Interaction of Mesons with the Gravitational Field. Progr. in Theor. Phys. 2, 38–62 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  68. Mercier A.: Sur les Fondements de l’Électrodynamique Classique (Méthode Axiomatique). Arch. Sci. Phys. Nat. Genà àve. 2, 584–588 (1949)

    MathSciNet  Google Scholar 

  69. Imaeda K.: Linearization of Minkowski Space and Five-Dimensional Space. Progress of Theor. Phys. 5, 133–134 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  70. Fujiwara I.: On the Duffin-Kemmer Algebra. Progr. Theor. Phys. 10, 589–616 (1953)

    Article  ADS  MATH  Google Scholar 

  71. Gürsey F.: Dual Invariance of Maxwell’s Tensor. Rev. Fac. Sci. Istanbul. A 19, 154–160 (1954)

    MATH  Google Scholar 

  72. Gupta S.: Gravitation and Electromagnetism. Phys. Rev. 96, 1683–1685 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Électromagnetisme. Paris. 1955.

  74. Ohmura T.: A New Formulation on the Electromagnetic Field. Prog. Theor. Phys. 16, 684–685 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Borgardt A.: Matrix Aspects of the Boson Theory. Sov. Phys. JETP. 30, 334–341 (1956)

    MathSciNet  Google Scholar 

  76. Fedorov F.: On the Reduction of Wave Equations for Spin-0 and Spin-1 to the Hamiltonian Form. JETP. 4, 139–141 (1957)

    Google Scholar 

  77. Kuohsien T.: Sur les Theories Matricielles du Photon. C. R. Acad. Sci. Paris 245, 141–144 (1957)

    MathSciNet  Google Scholar 

  78. Bludman S.: Some Theoretical Consequences of a Particle Having Mass Zero. Phys. Rev. 107, 1163–1168 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  79. Good R. Jr.: Particle Aspect of the Electromagnetic Field equations. Phys. Rev. 105, 1914–1919 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Moses H.: A Spinor Representation of Maxwell Equations. Nuovo Cimento Suppl. 1, 1–18 (1958)

    Article  MathSciNet  Google Scholar 

  81. Lomont J.: Dirac-Like Wave Equations for Particles of Zero Rest mass and their Quantization. Phys. Rev. 11, 1710–1716 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  82. Borgardt A.: Wave Equatons for a Photon. JETF. 34, 1323–1325 (1958)

    Google Scholar 

  83. Moses E.: Solutions of Maxwell’s Equations in Terms of a Spinor Notation: the Direct and Inverse Problems. Phys. Rev. 113, 1670–1679 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Adel da Silveira: Kemmer Wave Equation in Riemann Space. J. Math. Phys. 1, 489–491 (1960)

    Article  ADS  MATH  Google Scholar 

  85. Kemmer N.: On the Theory of Particles of Spin 1. Helv. Phys. Acta. 33, 829–838 (1960)

    MathSciNet  MATH  Google Scholar 

  86. Hjalmars S.: Wave Equations for Scalar and Vector Particles in Gravitational Fields. J. Math. Phys. 2, 663–666 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. Kibble T.: Lorentz Invariance and the Gravitational Field. J. Math. Phys. 2, 212–221 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. E. Post, Formal structure of Electrodynamics. General Covariance and Electromagnetics. Amsterdam. 1962.

  89. Bogush A., Fedorov F.: On Properties of the Duffin-Kemmer Matrices. Doklady AN BSSR 6, 81–85 (1962) (in Russian)

    MATH  Google Scholar 

  90. Sachs M., Schwebel S.: On Covariant Formulations of the Maxwell-Lorentz Theory of Electromagnetism. J. Math. Phys. 3, 843–848 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. J. Ellis, Maxwell’s Equations and Theories of Maxwell Form. Ph.D. thesis. University of London 1964. 417 pages.

  92. Oliver L.: Hamiltonian for a Kemmer Particle in an Electromagnetic Field. Anales de Fisica 64, 407 (1968)

    Google Scholar 

  93. Beckers J., Pirotte C.: Vectorial Meson Equations in Relation to Photon Description. Physica 39, 205 (1968)

    Article  ADS  Google Scholar 

  94. Casanova G.: Particules Neutre de Spin 1. C. R. Acad. Sci. Paris. A 268, 673–676 (1969)

    Google Scholar 

  95. Carmeli M.: Group Analysis of Maxwell Equations. J. Math. Phys. 10, 1699–1703 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  96. A. Bogush, To the Theory of Vector Particles. Preprint of IF AN BSSR, (1971).

  97. Lord E.: Six-Dimensional Formulation of Meson Equations. Int. J. Theor. Phys. 5, 339–348 (1972)

    Article  MathSciNet  Google Scholar 

  98. Moses H.: Photon Wave Functions and the Exact Electromagnetic Matrix eEements for Hydrogenic Atoms. Phys. Rev. A 8, 1710–1721 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  99. Weingarten D.: Complex Symmetries of Electrodynamics. Ann. Phys. 76, 510–548 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  100. Mignani R., Recami E., Baldo M.: About a Dirac-Like Equation for the Photon, According to E. Majorana. Lett. Nuovo Cimento 11, 568–572 (1974)

    Article  Google Scholar 

  101. Newman E.: Maxwell Equations and Complex Minkowski Space. J. Math. Phys. 14, 102–107 (1973)

    Article  ADS  Google Scholar 

  102. Frankel T.: Maxwell’s Equations. Amer. Math. Mon. 81, 343–349 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  103. B. Bolotowskij, C. Stoliarov, Contamporain State of Electrodynamics of Moving Medias (Unlimited Medias). Eistein collection. Moskow. (1974), 179-275.

  104. Edmonds J.: Comment on the Dirac-Like Equation for the Photon. Nuovo Cim. Lett. 13, 185–186 (1975)

    Article  Google Scholar 

  105. V. I. Strazhev, L. M. Tomil’chik, Electrodynamics with Magnetic Charge. Minsk. 1975.

  106. Da Silveira A.: Invariance algebras of the Dirac and Maxwell Equations. Nouvo Cim. A 56, 385–395 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  107. Jena P., Naik P., Pradhan T.: Photon as the Zero-Mass Limit of DKP Field. J. Phys. A 13, 2975–2978 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  108. Venuri G.A: Geometrical Formulation of eEectrodynamics. Nuovo Cim. A 65, 64–76 (1981)

    Article  ADS  Google Scholar 

  109. Chow T.: A Dirac-Like Equation for the Photon. J. Phys. A 14, 2173–2174 (1981)

    Article  ADS  Google Scholar 

  110. V. I. Fushchich, A. G. Nikitin. Symmetries of Maxwell’s Equations. Kiev, 1983; Kluwer. Dordrecht. 1987.

  111. Cook R.: Photon Dynamics. Phys. Rev. A 25, 2164–2167 (1982)

    Article  ADS  Google Scholar 

  112. R. Cook R., Lorentz Covariance of Photon Dynamics. Phys. Rev. A 26 (1982), 2754-2760.

  113. Giannetto E.: A Majorana-Oppenheimer Formulation of Quantum Electrodynamics. Lett. Nuovo Cim. 44, 140–144 (1985)

    Article  MathSciNet  Google Scholar 

  114. Kidd R., Ardini J., Anton A.: Evolution of the Modern Photon. Am. J. Phys. 57, 27 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  115. Recami E.: Possible Physical Meaning of the Photon Wave-Function, According to Ettore Majorana. in Hadronic Mechanics and Non-Potential Interactions, pp. 231–238. Nova Sc. Pub., New York (1990)

    Google Scholar 

  116. Krivsky I., Simulik V.: Foundations of Quantum Electrodynamics in Field Strengths Terms. Naukova Dumk, Kiev (1992)

    Google Scholar 

  117. Hillion P.: Spinor Electromagnetism in Isotropic Chiral Media. Adv. Appl. Clifford Alg. 3, 107–120 (1993)

    MathSciNet  MATH  Google Scholar 

  118. Baylis W.E.: Light Polarization: A geometricalgebra Approach. Amer. J. Phys. 61, 534–545 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  119. Inagaki T.: Quantum-Mechanical Approach to a Free Photon. Phys. Rev. A 49, 2839–2843 (1994)

    Article  ADS  Google Scholar 

  120. Sipe J.: Photon Wave Functions. Phys. Rev. A. 52, 1875–1883 (1995)

    Article  ADS  Google Scholar 

  121. Ghose P.: Relativistic Quantum Mechanics of Spin-0 and Spin-1 Bosons. Found. Phys. 26, 1441–1455 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  122. Gersten A.: Maxwell Equations as the One-Photon Quantum Equation. Found. of Phys. Lett. 12, 291–298 (1998) [arXiv:quant-ph/9911049]

    Article  MathSciNet  Google Scholar 

  123. Dvoeglazov V.: Speculations on the Neutrino Theory of Light. Annales de la Fondation Louis de Broglie 24, 111–127 (1999)

    Google Scholar 

  124. Dvoeglazov V.: Historical Note on Relativistic Theories of Electromagnetism. Apeiron. 5, 69–88 (1998)

    Google Scholar 

  125. Dvoeglazov V.: Generalized Maxwell and Weyl Equations for Massless Particles. Rev. Mex. Fis. 49, 99–103 (2003) [arXiv:math-ph/0102001]

    Google Scholar 

  126. Gsponer A.: On the “equivalence” of the Maxwell and Dirac Equations. Int. J. Theor. Phys. 41, 689–694 (2002) [arXiv:mathph/0201053]

    Article  MathSciNet  MATH  Google Scholar 

  127. Varlamov V.: About Algebraic Foundations of Majorana-Oppenheimer Quantum Electrodynamics and de Broglie-Jordan Neutrino Theory of Light. Ann. Fond. L. de Broglie 27, 273–286 (2003)

    MathSciNet  Google Scholar 

  128. Khan S.: Maxwell Optics: I. An exact matrix Representation of the Maxwell Equations in a Medium. Phys. Scripta 71, 440–442 (2005) arXiv:physics/0205083

    Article  MathSciNet  ADS  MATH  Google Scholar 

  129. S. Khan, Maxwell Optics: II. An Exact Formalism. arXiv:physics/0205084.

  130. S. Khan, Maxwell Optics: II. Applications. arXiv:physics/0205085.

  131. S. Donev, Complex Structures in Electrodynamics. arXiv:math-ph/0106008.

  132. Donev S.: From Electromagnetic Duality to Extended Electrodynamics. Annales Fond. L. de Broglie 29, 375–392 (2004) [arXiv:hep-th/0101137]

    MathSciNet  Google Scholar 

  133. Donev S., Tashkova M.: Extended Electrodynamics: A Brief Review. Proc. R. Soc. Lond. A 450, 281 (1995) [arXiv:hep-th/0403244]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  134. Armour Rollin S. Jr.: Spin-1/2 Maxwell fields., Found. Phys. 34, 815–842 (2004)

    MathSciNet  MATH  Google Scholar 

  135. I. Bialynicki-Birula, Z. Bialynicka-Birula, Beams of Electromagnetic Radiation Carrying Angular Momentum: The Riemann-Silberstein Vector and the Classical-Quantum Correspondence. arXiv:quant-ph/0511011.

  136. W. A. Rodrigues, de Oliveira E. Capelas. The Many Faces of Maxwell, Dirac and Einstein Equations. Lecture Notes in Physics 722, Springer (2007).

  137. Ovsiyuk E.M., Red’kov V.M.: Spherical waves of spin-1 particle in anti de Sitter space-time. Acta Physica Polonica. B. 41, 1247–1276 (2010)

    MathSciNet  Google Scholar 

  138. Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell equations in complex form of Majorana-Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ricerche di matematica. 59, 59–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  139. Campolattaro A.A.: New spinor representation of the Maxwell equations. I: Generalities. Int. J. Theor. Phys. 19, 99–126 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  140. Campolattaro A.A.: New spinor representation of the Maxwell equations. II: Algebraic properties. Int. J. Theor. Phys. 19, 127–138 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  141. Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. I: Dirac equation for the free electron. Int. J. Theor. Phys. 20, 141–155 (1990)

    Article  MathSciNet  Google Scholar 

  142. Campolattaro A.A.: Generalized Maxwell’s equations and quantum machanics. II: Generalized Dirac equation. Int. J. Theor. Phys. 29, 477–482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  143. Figueiredo V.L., de Capelas Oliveira E., Rodrigues W.A.: Covariant, algebraic, and operator spinors. Int. J. Theor. Phys. 29, 371–395 (1990)

    Article  MATH  Google Scholar 

  144. Vaz J., Rodrigues W.: Equivalence of Dirac and Maxwell equations and quantum mechanics. Int. J. Theor. Phys. 32, 945–959 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  145. Rodrigues W., Vaz J.: From Electromagnetism to Relativistic Quantum Mechanics. Found. Phys. 28, 789–814 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Red’kov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Red’kov, V.M., Tokarevskaya, N.G. & Spix, G.J. Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I. Minkowski Space. Adv. Appl. Clifford Algebras 22, 1129–1149 (2012). https://doi.org/10.1007/s00006-012-0320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-012-0320-1

Keywords

Navigation