Advances in Applied Clifford Algebras

, Volume 22, Issue 1, pp 1–21 | Cite as

A Clifford Cl(5, C) Unified Gauge Field Theory of Conformal Gravity, Maxwell and U(4) × U(4) Yang-Mills in 4D

  • Carlos Castro


A Clifford Cl(5, C) Unified Gauge Field Theory of Conformal Gravity, Maxwell and U(4) × U(4) Yang-Mills in 4D is rigorously presented extending our results in prior work. The \({Cl(5, C) = Cl(4, C) \oplus Cl(4, C)}\) algebraic structure, behind the 4D (complexified) Conformal Gravity-Maxwell and U(4) × U(4) Yang-Mills unification program advanced in this work, is such that it encodes the direct group product U(2, 2) × U(4) × U(4) = [SU(2, 2)] spacetime × [U(1) × U(4) × U(4)] internal and which does not violate the Coleman-Mandula theorem because the spacetime symmetries (conformal group SU(2, 2) in the absence of a mass gap, Poincaré group when there is mass gap) do not mix with the internal symmetries. Similar considerations apply to the supersymmetric case when the symmetry group structure is given by the direct product of the superconformal group (in the absence of a mass gap) with an internal symmetry group so that the Haag-Lopuszanski-Sohnius theorem is not violated. A generalization of the de Sitter and Anti de Sitter gravitational theories based on the gauging of the Cl(4, 1, R), Cl(3, 2, R) algebras follows. We conclude with a few remarks about the complex extensions of the Metric Affine theories of Gravity (MAG) based on GL(4, C) × s C 4, the realizations of twistors and the \({\mathcal{N}}\) = 1 superconformal su(2, 2|1) algebra purely in terms of Clifford algebras and their plausible role in Witten’s formulation of perturbative \({\mathcal{N}}\) = 4 super Yang- Mills theory in terms of twistor-string variables.


C-space Gravity Clifford Algebras Grand Unification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bars I., Gunaydin M.: Phys. Rev. Lett. 45, 859 (1980)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    N. Baaklini, Phys. Lett. 91 B (1980), 376.ADSGoogle Scholar
  3. 3.
    S. Konshtein and E. Fradkin, Pis’ma Zh. Eksp. Teor. Fiz 42 (1980), 575.Google Scholar
  4. 4.
    M. Koca, Phys. Lett. 107 B (1981), 73.ADSGoogle Scholar
  5. 5.
    S. Adler, Further thoughts on Supersymmetric E 8 as family and grand unification theory. hep-ph/0401212.Google Scholar
  6. 6.
    K. Itoh, T. Kugo and H. Kunimoto, Progress of Theoretical Physics 75 no. 2 (1986), 386.Google Scholar
  7. 7.
    Barr S.: Physical Review D 37, 204 (1988)MathSciNetADSGoogle Scholar
  8. 8.
    R. Mohapatra, Unification and Supersymmetry: The frontiers of Quark-Lepton Physics. (Springer Verlag, Third Edition, 1986).Google Scholar
  9. 9.
    Hewett J., Rizzo T.: Phys. Reports 183, 193 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    I. R. Porteous, Clifford algebras and Classical Groups. (Cambridge Univ. Press, 1995).Google Scholar
  11. 11.
    C. H Tze and F. Gursey, On the role of Divison, Jordan and Related Algebras in Particle Physics. (World Scientific, Singapore 1996).Google Scholar
  12. 12.
    S. Okubo, Introduction to Octonion and other Nonassociative Algebras in Physics. (Cambridge Univ. Press, 2005).Google Scholar
  13. 13.
    J. Baez, Bull. Amer. Math. Soc 39 no. 2 (2002), 145.Google Scholar
  14. 14.
    Jordan P., von Neumann J., Wigner E.: Ann. Math. 35, 2964 (1934)CrossRefGoogle Scholar
  15. 15.
    K. MacCrimmon, A Taste of Jordan Algebras. (Springer Verlag, New York 2003).Google Scholar
  16. 16.
    C. Castro, IJGMMP 4, No. 8 (2007), 1239.Google Scholar
  17. 17.
    C. Castro, IJGMMP 6, No. 3 (2009), 1-33.Google Scholar
  18. 18.
    C. Castro, IJGMMP 6 No. 6 (2009), 911.Google Scholar
  19. 19.
    M. Cederwall and J. Palmkvist, The octic E 8 invariant. hep-th/0702024.Google Scholar
  20. 20.
    N. Batakis, Class and Quantum Gravity 3 (1986), L 99.Google Scholar
  21. 21.
    MacDowell S.W., Mansouri F.: Phys. Rev. Lett. 38, 739 (1977)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Chamseddine A., West P.: Nuc. Phys. B 129, 39 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    Lee C., Ne’eman Y.: Class. Quan. Grav 9, 2001 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    R. Gilmore, Lie Groups, Lie Algebras and some of their Applications. (John Wiley and Sons Inc, New York, 1974).Google Scholar
  25. 25.
    C. Castro, M. Pavsic, Progress in Physics 1 (2005), 31.Google Scholar
  26. 26.
    Chamseddine A.: Comm. Math. Phys. 218, 283 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    M. Pavsic, The Landscape of Theoretical Physics: A Global View, From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle. (Kluwer Academic Publishers, Dordrecht-Boston-London, 2001).Google Scholar
  28. 28.
    Pavsic M.: Found. Phys. 37, 1197 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Pavsic M.: J. Phys. A 41, 332001 (2008)MathSciNetGoogle Scholar
  30. 30.
    Frank (Tony) Smith, The Physics of E 8 and \({Cl(16) = Cl(8) \otimes Cl(8)}\) . (Carterville, Georgia, June 2008, 367 pages).
  31. 31.
    F. Nesti and R. Percacci, J. Phys. A 41 (2008), 075405.MathSciNetADSGoogle Scholar
  32. 32.
    J. Baez and J. Huerta, The Algebra of Grand Unified Theories. arXiv: 0904.1556 (hep-th).Google Scholar
  33. 33.
    C. Castro, J. Math. Phys, 48 no. 7 (2007), 073517.Google Scholar
  34. 34.
    S. Marques and C. Oliveira, J. Math. Phys. 26 (1985), 3131.Google Scholar
  35. 35.
    Pati J., Salam A.: Phys. Rev. Lett. 31, 661 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    J. Pati and A. Salam, Phys. Rev. D 10 (1974), 275.ADSGoogle Scholar
  37. 37.
    S. Rajpoot and M. Singer, J. Phys. G: Nuc. Phys. 5 no. 7 (1979), 871.Google Scholar
  38. 38.
    L. Fong Li, Phys. Rev. D 9 no. 6 (1974), 1723.Google Scholar
  39. 39.
    G. Trayling and W. Baylis, J. Phys. A 34 (2001), 3309.MathSciNetADSGoogle Scholar
  40. 40.
    K. Becker, M. Becker and J. Schwarz, String Theory and M-Theory. (Cambridge Univ Press 2007).Google Scholar
  41. 41.
    T. Li, F. Wang and J. Yang, The SU(3)c × SU(4) × U(1)BL models with left-right unification. arXiv: 0901.2161.Google Scholar
  42. 42.
    A. Chamseddine and A. Connes, Noncommutative Geometry as a Framework for Unification of all Fundamental Interactions including Gravity. Part I. [arXiv : 1004.0464].Google Scholar
  43. 43.
    A. Chamseddine and A. Connes, Comm. Math. Phys. 186 (1997), 731.MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    E. Fradkin and A. Tseytlin, Phys. Reports 119 nos. 4-5 (1985), 233-362.Google Scholar
  45. 45.
    Kaku M., Townsend P., van Nieuwenhuizen P.: Phys. Lett B 69, 304 (1977)ADSGoogle Scholar
  46. 46.
    C. Castro, IJMPA 25 No.1 (2010), 123.Google Scholar
  47. 47.
    C. Castro, Generalized Gravity in Clifford Spaces, Vacuum Energy and Grand Unification. To appear in the International Journal of Geometric Methods in Modern Physics, 2011.Google Scholar
  48. 48.
    A. Stern, Particle classification and dynamics in GL(2, C) Gravity. arXiv: 0903.0882.Google Scholar
  49. 49.
    D. Bohm and B. Hiley, Revista Brasileira de Fisica, Volume Especial, Os 70 anos de Mario Schoenberg, (1984), pp. 1-26.Google Scholar
  50. 50.
    Witten E.: Comm. Math. Phys. 252, 189 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    Born M.: Proc. Royal Society A 165, 291 (1938)CrossRefGoogle Scholar
  52. 52.
    Born M.: Rev. Mod. Physics 21, 463 (1949)ADSMATHCrossRefGoogle Scholar
  53. 53.
    Low S.: Jour. Phys A Math. Gen 35, 5711 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  54. 54.
    Castro C.: Phys Letts B 668, 442 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    S. L. Glashow, in: Fifth Workshop on Grand Unification. Ed. K. Kang, H. Fried and P. Frampton (World Scientific, Singapore, 1984), p. 88.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Center for Theoretical Studies of Physical SystemsClark AtlantaUSA

Personalised recommendations