Advances in Applied Clifford Algebras

, Volume 21, Issue 3, pp 443–454 | Cite as

Annihilators for Harmonic Differential Forms Via Clifford Analysis

  • Ricardo Abreu-Blaya
  • Juan Bory-Reyes
  • Richard Delanghe
  • Frank Sommen


In this paper we describe completely the annihilators of harmonic differential forms into the Clifford analysis approach.

Mathematics Subject Classification (2010)



Harmonic forms Clifford analysis duality theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abreu Blaya R., Bory Reyes J., Delanghe R., Sommen F.: Duality for Harmonic Differential Forms via Clifford Analysis. Adv. appl. Clifford alg. 17(4), 589–610 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R. Abreu Blaya, J. Bory Reyes, R. Delanghe, F. Sommen, Duality for Hermitean Systems in \({\mathbb R{^{2n}}}\) . Complex Anal. Oper. Theory, accepted for publication.Google Scholar
  3. 3.
    Abreu R., Bory J., Delanghe R., Sommen F.: Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis. Bull. Belg. Math. Soc. Simon Stevin 11(1), 95–110 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    F. Brackx, R. Delanghe, F. Sommen, Clifford analysis. Research Notes in Mathematics 76 Pitman, Boston 1982.Google Scholar
  5. 5.
    Delanghe R., Brackx F.: Duality in Hypercomplex Function Theory. J. Funct. Anal. 37(2), 164–181 (1980)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    R. Delanghe, F. Sommen, V. Souček, Clifford algebra and spinor-valued functions. Mathematics and its Applications 53. Kluwer Academic Publishers Group, Dordrecht, 1992.Google Scholar
  7. 7.
    Gustafsson B., Khavinson D.: On annihilators of harmonic vector fields. Zap. Nauchn. Sem. POMI 232, 90–108 (1996)Google Scholar
  8. 8.
    Köthe G.: Dualität in der Funktionentheorie. J. Reine Angew. Math. 191, 30–49 (1953)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sommen F.: Monogenic Differential Calculus. Trans. Amer.Math. Soc. 326(2), 613–632 (1991)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Moisil Gr., Théodoresco N.: Fonctions holomorphes dans l’espace. Mathematica, Cluj 5, 142–159 (1931)MATHGoogle Scholar
  11. 11.
    Stein E.M., Weiss G.: On the theory of harmonic functions of several variables, I: The theory of Hp-spaces. Acta Math. 103, 25–62 (1960)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    D. Hestenes and G. Sobczyk, Clifford algebra to geometric calculus. D. Reidel Publ. Cy, Dordrecht, 1984.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Ricardo Abreu-Blaya
    • 1
  • Juan Bory-Reyes
    • 2
  • Richard Delanghe
    • 3
  • Frank Sommen
    • 3
  1. 1.Facultad de Informática y MatemáticaUniversidad de HolguínHolguńCuba
  2. 2.Departamento de MatemáticaUniversidad de OrienteSantiago de CubaCuba
  3. 3.Department of Mathematical Analysis, Faculty of EngineeringGhent UniversityGentBelgium

Personalised recommendations