Skip to main content

Advertisement

Log in

Innate Lymphoid Cells in Inflammatory Bowel Disease

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a complex chronic inflammatory condition of the human gut of unknown causes. Traditionally, dysregulated adaptive immune responses are thought to play a major role; however, accumulating evidence suggests that innate immunity also contributes to this process. Innate lymphoid cells (ILCs) are recently identified important components of innate immunity. They have critical roles in immunity, tissue development and remodeling. Numerous researchers have linked ILCs to the pathogenesis of IBD. In this review, we describe recent progress in our understanding about the phenotype and function alterations of ILCs as well as its interactions with other key mucosal cells in the gut of IBD patients. A better delineation of the ILCs’ behavior in the human intestine will contribute to our understanding of ILCs biology and provide valuable insights for potential therapeutic target selection for IBD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12:205–217

    Article  Google Scholar 

  • Andreu-Ballester JC, Amigó-García V, Catalán-Serra I et al (2011) Deficit of gammadelta T lymphocytes in the peripheral blood of patients with Crohn’s disease. Dig Dis Sci 56:2613–2622

    Article  Google Scholar 

  • Bailey JR, Bland PW, Tarlton JF et al (2012) IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 7:e52332

    Article  CAS  Google Scholar 

  • Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet 380:1590–1605

    Article  Google Scholar 

  • Bernink JH, Peters CP, Munneke M et al (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229

    Article  CAS  Google Scholar 

  • Bernink JH, Krabbendam L, Germar K et al (2015) Interleukin-12 and – 23 Control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–160

    Article  CAS  Google Scholar 

  • Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368

    Article  CAS  Google Scholar 

  • Bonen DK, Cho JH (2003) The genetics of inflammatory bowel disease. Gastroenterology 124:521–536

    Article  CAS  Google Scholar 

  • Bruce DW, Stefanski HE, Vincent BG et al (2017) Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest 127:1813–1825

    Article  Google Scholar 

  • Bruewer M, Utech M, Ivanov AI et al (2005) Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19:923–933

    Article  CAS  Google Scholar 

  • Cella M, Fuchs A, Vermi W et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    Article  CAS  Google Scholar 

  • Cupedo T, Crellin NK, Papazian N et al (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC + CD127 + natural killer-like cells. Nat Immunol 10:66–74

    Article  CAS  Google Scholar 

  • de Souza HS, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13:13–27

    Article  Google Scholar 

  • Diaz-Pena R, Vidal-Castineira JR, Moro-Garcia MA et al (2016) Significant association of the KIR2DL3/HLA-C1 genotype with susceptibility to Crohn’s disease. Hum Immunol 77:104–109

    Article  CAS  Google Scholar 

  • Egawa S, Hiwatashi N (1986) Natural killer cell activity in patients with inflammatory bowel disease. J Clin Lab Immunol 20:187–192

    CAS  PubMed  Google Scholar 

  • Fort MM, Leach MW, Rennick DM (1998) A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol 161:3256–3261

    CAS  PubMed  Google Scholar 

  • Fuchs A, Vermi W, Lee JS et al (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781

    Article  CAS  Google Scholar 

  • Geremia A, Arancibia-Cárcamo CV, Fleming MP et al (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133

    Article  CAS  Google Scholar 

  • Gerosa F, Baldani-Guerra B, Nisii C et al (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  CAS  Google Scholar 

  • Glatzer T, Killig M, Meisig J et al (2013) RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 38:1223–1235

    Article  CAS  Google Scholar 

  • Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009

    Article  Google Scholar 

  • Halim TY, Steer CA, Mathä L et al (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–435

    Article  CAS  Google Scholar 

  • Hepworth MR, Monticelli LA, Fung TC et al (2013) Innate lymphoid cells regulate CD4 + T-cell responses to intestinal commensal bacteria. Nature 498:113–117

    Article  CAS  Google Scholar 

  • Hepworth MR, Fung TC, Masur SH et al (2015) Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 348:1031–1035

    Article  CAS  Google Scholar 

  • Hollenbach JA, Ladner MB, Saeteurn K et al (2009) Susceptibility to Crohn’s disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand. Immunogenetics 61:663–671

    Article  CAS  Google Scholar 

  • Hoorweg K, Peters CP, Cornelissen F et al (2012) Functional differences between human NKp44(-) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol 3:72

    Article  Google Scholar 

  • Kadivar M, Petersson J, Svensson L et al (2016) CD8alphabeta + gammadelta T cells: a novel T cell subset with a potential role in inflammatory bowel disease. J Immunol 197:4584–4592

    Article  CAS  Google Scholar 

  • Laouar Y, Sutterwala FS, Gorelik L et al (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607

    Article  CAS  Google Scholar 

  • Li J, Doty A, Glover SC (2016a) Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients. Inflamm Cell Signal 3:e1404. https://doi.org/10.14800/ics.1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Doty AL, Iqbal A et al (2016b) The differential frequency of Lineage(-)CRTH2(-)CD45(+)NKp44(-)CD117(-)CD127(+)ILC subset in the inflamed terminal ileum of patients with Crohn’s disease. Cell Immunol 304–305:63–68

    Article  Google Scholar 

  • Li J, Doty AL, Tang Y et al (2017a) Enrichment of IL-17A(+) IFN-gamma(+) and IL-22(+) IFN-gamma(+) T cell subsets is associated with reduction of NKp44(+) ILC3s in the terminal ileum of Crohn’s disease patients. Clin Exp Immunol 190:143–153

    Article  CAS  Google Scholar 

  • Li J, Shouval DS, Doty AL et al (2017b) Increased mucosal IL-22 production of an IL-10RA mutation patient following anakinra treatment suggests further mechanism for mucosal healing. J Clin Immunol 37:104–107

    Article  CAS  Google Scholar 

  • Maazi H, Patel N, Sankaranarayanan I et al (2015) ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42:538–551

    Article  CAS  Google Scholar 

  • Mackley EC, Houston S, Marriott CL et al (2015) CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 6:5862

    Article  CAS  Google Scholar 

  • Mann ER, McCarthy NE, Peake ST et al (2012) Skin- and gut-homing molecules on human circulating gammadelta T cells and their dysregulation in inflammatory bowel disease. Clin Exp Immunol 170:122–130

    Article  CAS  Google Scholar 

  • Martin CE, Spasova DS, Frimpong-Boateng K et al (2017) Interleukin-7 Availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. Immunity 47:171–182 e4

    Article  CAS  Google Scholar 

  • Martin-Fontecha A, Thomsen LL, Brett S et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  CAS  Google Scholar 

  • McCarthy NE, Hedin CR, Sanders TJ et al (2015) Azathioprine therapy selectively ablates human Vdelta2(+) T cells in Crohn’s disease. J Clin Invest 125:3215–3225

    Article  Google Scholar 

  • McVay LD, Li B, Biancaniello R et al (1997) Changes in human mucosal gamma delta T cell repertoire and function associated with the disease process in inflammatory bowel disease. Mol Med 3:183–203

    Article  CAS  Google Scholar 

  • Mizuno S, Mikami Y, Kamada N et al (2014) Cross-talk between RORgammat + innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn’s disease. Inflamm Bowel Dis 20:1426–1434

    Article  Google Scholar 

  • Mjosberg J, Spits H (2016) Human innate lymphoid cells. J Allergy Clin Immunol 138:1265–1276

    Article  Google Scholar 

  • Mocikat R, Braumüller H, Gumy A et al (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    Article  CAS  Google Scholar 

  • Monticelli LA, Osborne LC, Noti M et al (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA 112:10762–10767

    Article  CAS  Google Scholar 

  • Morandi B, Bougras G, Muller WA et al (2006) NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 36:2394–2400

    Article  CAS  Google Scholar 

  • Moretta A, Marcenaro E, Parolini S et al (2008) NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15:226–233

    Article  CAS  Google Scholar 

  • Nausch N, Appleby LJ, Sparks AM et al (2015) Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 9:e0003627

    Article  Google Scholar 

  • Ng SC, Plamondon S, Al-Hassi HO et al (2009) A novel population of human CD56+ human leucocyte antigen D-related (HLA-DR+) colonic lamina propria cells is associated with inflammation in ulcerative colitis. Clin Exp Immunol 158:205–218

    Article  CAS  Google Scholar 

  • Oliphant CJ, Hwang YY, Walker JA et al (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–295

    Article  CAS  Google Scholar 

  • Ordas I, Eckmann L, Talamini M et al (2012) Ulcerative colitis. Lancet 380:1606–1619

    Article  Google Scholar 

  • Patrick DM, Leone AK, Shellenberger JJ et al (2006) Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling. BMC Physiol 6:2

    Article  Google Scholar 

  • Pelly VS, Kannan Y, Coomes SM et al (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–1417

    Article  CAS  Google Scholar 

  • Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641

    Article  CAS  Google Scholar 

  • Sawa S, Lochner M, Satoh-Takayama N et al (2011) RORgammat + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12:320–326

    Article  CAS  Google Scholar 

  • Simoni Y, Fehlings M, Kløverpris HN et al (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46:148–161

    Article  CAS  Google Scholar 

  • Song C, Lee JS, Gilfillan S et al (2015) Unique and redundant functions of NKp46 + ILC3s in models of intestinal inflammation. J Exp Med 212:1869–1882

    Article  CAS  Google Scholar 

  • Steel AW, Mela CM, Lindsay JO et al (2011) Increased proportion of CD16(+) NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Aliment Pharmacol Ther 33:115–126

    Article  CAS  Google Scholar 

  • Takayama T, Kamada N, Chinen H et al (2010) Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139:882–892, 892 e1–3

    Article  CAS  Google Scholar 

  • Torres J, Mehandru S, Colombel JF et al (2017) Crohn’s disease. Lancet 389:1741–1755

    Article  Google Scholar 

  • Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  Google Scholar 

  • von Moltke J, Ji M, Liang HE et al (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225

    Article  Google Scholar 

  • Wilhelm C, Harrison OJ, Schmitt V et al (2016) Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J Exp Med 213:1409–1418

    Article  CAS  Google Scholar 

  • Wilson TJ, Jobim M, Jobim LF et al (2010) Study of killer immunoglobulin-like receptor genes and human leukocyte antigens class I ligands in a Caucasian Brazilian population with Crohn’s disease and ulcerative colitis. Hum Immunol 71:293–297

    Article  CAS  Google Scholar 

  • Withers DR, Jaensson E, Gaspal F et al (2009) The survival of memory CD4 + T cells within the gut lamina propria requires OX40 and CD30 signals. J Immunol 183:5079–5084

    Article  CAS  Google Scholar 

  • Withers DR, Gaspal FM, Mackley EC et al (2012) Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J Immunol 189:2094–2098

    Article  CAS  Google Scholar 

  • Yusung S, McGovern D, Lin L et al (2017) NK cells are biologic and biochemical targets of 6-mercaptopurine in Crohn’s disease patients. Clin Immunol 175:82–90

    Article  CAS  Google Scholar 

  • Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–957

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gatorade Trust through funds distributed by the University of Florida, Department of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Glover.

Ethics declarations

Conflict of Interest

The authors declared no conflicts of interest in this study. Sarah Glover, DO is a consultant for AbbVie, Janssen and Takeda. Sarah Glover, DO has received grant support from AbbVie, Bristol Myers Squibb, Celgene, Gilead, Janssen, Genentech, Millennium, Pfizer, Receptos, Takeda and UCB.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Glover, S.C. Innate Lymphoid Cells in Inflammatory Bowel Disease. Arch. Immunol. Ther. Exp. 66, 415–421 (2018). https://doi.org/10.1007/s00005-018-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-018-0519-5

Keywords

Navigation