Adverse Effects Associated with Clinical Applications of CAR Engineered T Cells

  • Zohreh Sadat Badieyan
  • Sayed Shahabuddin Hoseini


Cancer has been ranked as the second leading cause of death in the United States. To reduce cancer mortality, immunotherapy is gaining momentum among other therapeutic modalities, due to its impressive results in clinical trials. The genetically engineered T cells expressing chimeric antigen receptors (CARs) are emerging as a new approach in cancer immunotherapy, with the most successful outcomes in the refractory/relapse hematologic malignancies. However, the widespread clinical applications are limited by adverse effects some of which are life-threatening. Strategies to reduce the chance of side effects as well as close monitoring, rapid diagnosis and proper treatment of side effects are necessary to take the most advantages of this valuable therapy. Here we review the reported toxicities associated with CAR engineered T cells, the strategies to ameliorate the toxicity, and further techniques and designs leading to a safer CAR T-cell therapy.


Engineered T cells Chimeric antigen receptors (CARs) Immunotherapy Adverse effects 



This work was supported by Funds from Kids Walk for Kids with Cancer NYC, Katie Find a Cure Foundation, the Robert Steel Foundation, and NIH/NCI Cancer Center Support Grant P30 CA008748.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bonifant CL, Jackson HJ, Brentjens RJ et al (2016) Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011CrossRefPubMedPubMedCentralGoogle Scholar
  2. Byrd JC, Furman RR, Coutre SE et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42CrossRefPubMedPubMedCentralGoogle Scholar
  3. Caratelli S, Sconocchia T, Arriga R et al (2017) FCgamma chimeric receptor-engineered T cells: methodology, advantages, limitations, and clinical relevance. Front Immunol 8:457CrossRefPubMedPubMedCentralGoogle Scholar
  4. Caruso HG, Hurton LV, Najjar A et al (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75:3505–3518CrossRefPubMedPubMedCentralGoogle Scholar
  5. Casucci M, Bondanza A (2011) Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J Cancer 2:378–382CrossRefPubMedPubMedCentralGoogle Scholar
  6. Curran KJ, Pegram HJ, Brentjens RJ (2012) Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 14:405–415CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dai H, Wang Y, Lu X et al (2016) Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 108:djv439CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davila ML, Sadelain M (2016) Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol 104:6–17CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25CrossRefPubMedPubMedCentralGoogle Scholar
  10. DeFrancesco L (2017) CAR-T’s forge ahead, despite Juno deaths. Nat Biotechnol 35:6–7CrossRefPubMedGoogle Scholar
  11. Di Stasi A, De Angelis B, Rooney CM et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:6392–6402CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fitzgerald JC, Weiss SL, Maude SL et al (2017) Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med 45:e124–e131CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gargett T, Brown MP (2014) The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 5:235CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghosh A, Smith M, James SE et al (2017) Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med 23:242–249CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024–10028CrossRefPubMedGoogle Scholar
  17. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41:2502–2512CrossRefPubMedGoogle Scholar
  18. Iyer SS, Cheng G (2012) Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 32:23–63CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jones BS, Lamb LS, Goldman F et al (2014) Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 5:254CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kloss CC, Condomines M, Cartellieri M et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75CrossRefPubMedGoogle Scholar
  21. Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195CrossRefPubMedPubMedCentralGoogle Scholar
  22. MacLeod DT, Antony J, Martin AJ et al (2017) Integration of a CD19 CAR into the TCR Alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther 25:949–961CrossRefPubMedPubMedCentralGoogle Scholar
  23. Magee MS, Snook AE (2014) Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer. Discov Med 18:265–271PubMedGoogle Scholar
  24. Marin V, Cribioli E, Philip B et al (2012) Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods 23:376–386CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maude SL, Barrett D, Teachey DT et al (2014) Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20:119–122CrossRefPubMedPubMedCentralGoogle Scholar
  26. Maus MV, Levine BL (2016) Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 21:608–617CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maus MV, Haas AR, Beatty GL et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1:26–31CrossRefPubMedCentralGoogle Scholar
  28. Maus MV, Grupp SA, Porter DL et al (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851CrossRefPubMedPubMedCentralGoogle Scholar
  30. Namuduri M, Brentjens RJ (2016) Medical management of side effects related to CAR T cell therapy in hematologic malignancies. Expert Rev Hematol 9:511–513CrossRefPubMedPubMedCentralGoogle Scholar
  31. Paszkiewicz PJ, Fräßle SP, Srivastava S et al (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126:4262–4272CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rodgers DT, Mazagova M, Hampton EN et al (2016) Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci USA 113:E459–E468CrossRefPubMedGoogle Scholar
  33. Ruella M, Kenderian SS, Shestova O et al (2017) Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms. Leukemia 31:246–248CrossRefPubMedGoogle Scholar
  34. Saha B, Jyothi PS et al (2010) Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50:1–14CrossRefPubMedGoogle Scholar
  35. Tasian SK, Gardner RA (2015) CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol 6:228–241CrossRefPubMedPubMedCentralGoogle Scholar
  36. Teachey DT, Rheingold SR, Maude SL et al (2013) Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121:5154–5157CrossRefPubMedPubMedCentralGoogle Scholar
  37. Terakura S, Yamamoto TN, Gardner RA et al (2012) Generation of CD19-chimeric antigen receptor modified CD8 + T cells derived from virus-specific central memory T cells. Blood 119:72–82CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tiu RV, Mountantonakis SE, Dunbar AJ et al (2007) Tumor lysis syndrome. Semin Thromb Hemost 33:397–407CrossRefPubMedGoogle Scholar
  39. Venkiteshwaran A (2009) Tocilizumab MAbs 1:432–438CrossRefPubMedGoogle Scholar
  40. Wang X, Chang WC, Wong CW et al (2011) A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118:1255–1263CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang ML, Rule S, Martin P et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wu CY, Roybal KT, Puchner EM et al (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350:aab4077CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xu XJ, Tang YM (2014) Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett 343:172–178CrossRefPubMedGoogle Scholar
  44. Zhao Y, Moon E, Carpenito C et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2018

Authors and Affiliations

  1. 1.New YorkUSA
  2. 2.Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations