Allergen-Specific T Cells in IgE-Mediated Food Allergy

  • Aziza Saidova
  • Ahuva Magder Hershkop
  • Marta Ponce
  • Thomas Eiwegger


Food allergy is the major reason for severe anaphylaxis in childhood and adolescence. Currently, effective and safe treatments for food allergy are unavailable. Allergen-specific CD4+ T cells have a pivotal role in causing and maintaining the allergic response to food allergens. The purpose of this review is to provide an overview on the role of allergen-specific T cells in food allergy during allergic sensitization, natural tolerance development and allergen immunotherapy. Allergen-specific T cells in the context of food allergy are predominantly of a Th2 type with slightly different surface marker expression patterns in different food allergies. During the process of reverting food allergy to a status of tolerance or sustained unresponsiveness there is a loss of this Th2 committed compartment with an asymptotic approximation to a regulatory and Th0/Th1 dominated compartment seen in non-allergic individuals. This process is accompanied by a significant reduction of absolute frequencies of allergen-specific T cells. Particularly, regulatory T cells may provide significant help to achieve sustained control of the effector cell populations via suppression of effector cell function and possibly induction of blocking antibodies.


Allergy IgE-mediated food allergy Helper T cells Th2 cells Regulatory T cells 



This work was supported by Grants from: Islamic Development Bank Merit Scholarship Programme for 1433H (2012-13), HSBC Bank Canada Catalyst Research Grant from The Hospital for Sick Children, Innovation Fund Denmark #6159-00005A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akdis CA, Akdis M (2015) Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 8:17PubMedCrossRefGoogle Scholar
  2. Akdis M, Aab A, Altunbulakli C et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J Allergy Clin Immunol 138:984–1010PubMedCrossRefGoogle Scholar
  3. Archila LD, Jeong D, Pascal M et al (2015) Jug r 2-reactive CD4(+) T cells have a dominant immune role in walnut allergy. J Allergy Clin Immunol 136:983–992.e7PubMedPubMedCentralCrossRefGoogle Scholar
  4. Archila LD, Chow IT, McGinty JW et al (2016) Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts. Clin Exp Allergy 46:871–883PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arrieta MC, Stiemsma LT, Dimitriu PA et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152PubMedCrossRefGoogle Scholar
  6. Ashley SE, Tan HT, Vuillermin P et al (2017) The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy 72:1356–1364PubMedCrossRefGoogle Scholar
  7. Bahnson HT, du Toit G, Lack G (2017) Statistical considerations of food allergy prevention studies. J Allergy Clin Immunol Pract 5:274–282PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bedoret D, Singh AK, Shaw V et al (2012) Changes in antigen-specific T-cell number and function during oral desensitization in cow’s milk allergy enabled with omalizumab. Mucosal Immunol 5:267–276PubMedPubMedCentralCrossRefGoogle Scholar
  9. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954–959PubMedCrossRefGoogle Scholar
  10. Bellach J, Schwarz V, Ahrens B et al (2017) Randomized placebo-controlled trial of hen’s egg consumption for primary prevention in infants. J Allergy Clin Immunol 139:1591–1599.e2PubMedCrossRefGoogle Scholar
  11. Blom LH, Martel BC, Larsen LF et al (2017) The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses. Allergy 72:1081–1090PubMedCrossRefGoogle Scholar
  12. Bonnet B, Vigneron J, Levacher B et al (2016) Low-dose IL-2 induces regulatory T cell-mediated control of experimental food allergy. J Immunol 197:188–198PubMedCrossRefGoogle Scholar
  13. Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113:821–830 quiz 831PubMedCrossRefGoogle Scholar
  14. Brough HA, Cousins DJ, Munteanu A et al (2014) IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol 134:1329–1338.e1310PubMedCrossRefGoogle Scholar
  15. Bublin M, Eiwegger T, Breiteneder H (2014) Do lipids influence the allergic sensitization process? J Allergy Clin Immunol 134:521–529PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burks AW, Jones SM, Wood RA et al (2012) Oral immunotherapy for treatment of egg allergy in children. N Engl J Med 367:233–243PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caubet JC, Bencharitiwong R, Moshier E et al (2012) Significance of ovomucoid- and ovalbumin-specific IgE/IgG(4) ratios in egg allergy. J Allergy Clin Immunol 129:739–747PubMedCrossRefGoogle Scholar
  18. Caubet JC, Lin J, Ahrens B et al (2017) Natural tolerance development in cow’s milk allergic children:IgE and IgG4 epitope binding. Allergy 72:1677–1685PubMedCrossRefGoogle Scholar
  19. Chattopadhyay PK, Yu J, Roederer M (2005) A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 11:1113–1117PubMedCrossRefGoogle Scholar
  20. Chen CY, Lee JB, Liu B et al (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43:788–802PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chinthrajah RS, Tupa D, Prince BT et al (2015) Diagnosis of food allergy. Pediatr Clin N Am 62:1393–1408CrossRefGoogle Scholar
  22. Chinthrajah RS, Hernandez JD, Boyd SD et al (2016) Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 137:984–997PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chu DK, Llop-Guevara A, Walker TD et al (2013) IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 131:187–200.e1–8PubMedCrossRefGoogle Scholar
  24. de Silva D, Geromi M, Halken S et al (2014) Primary prevention of food allergy in children and adults: systematic review. Allergy 69:581–589PubMedCrossRefGoogle Scholar
  25. DeLong JH, Simpson KH, Wambre E et al (2011) Ara h 1-reactive T cells in individuals with peanut allergy. J Allergy Clin Immunol 127:1211–1218.e3PubMedPubMedCentralCrossRefGoogle Scholar
  26. Diesner SC, Bergmayr C, Pfitzner B et al (2016) A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol 173:10–18PubMedPubMedCentralCrossRefGoogle Scholar
  27. Du Toit G, Roberts G, Sayre PH et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372:803–813PubMedCrossRefGoogle Scholar
  28. Du Toit G, Sayre PH, Roberts G et al (2016) Effect of Avoidance on peanut allergy after early peanut consumption. N Engl J Med 374:1435–1443PubMedCrossRefGoogle Scholar
  29. Eiwegger T, Akdis CA (2011) IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur J Immunol 41:1535–1538PubMedCrossRefGoogle Scholar
  30. Eiwegger T, Rigby N, Mondoulet L et al (2006) Gastro-duodenal digestion products of the major peanut allergen Ara h 1 retain an allergenic potential. Clin Exp Allergy 36:1281–1288PubMedCrossRefGoogle Scholar
  31. Fishbein AB, Qamar N, Erickson KA et al (2014) Cytokine responses to egg protein in previously allergic children who developed tolerance naturally. Ann Allergy Asthma Immunol 113:667–670.e4PubMedCrossRefGoogle Scholar
  32. Flinterman AE, Pasmans SG, den Hartog Jager CF et al (2010) T cell responses to major peanut allergens in children with and without peanut allergy. Clin Exp Allergy 40:590–597PubMedGoogle Scholar
  33. Frischmeyer-Guerrerio PA, Masilamani M, Gu W et al (2017) Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. J Allergy Clin Immunol 140:1043–1053.e8PubMedCrossRefGoogle Scholar
  34. Frossard CP, Zimmerli SC, Rincon Garriz JM et al (2015) Food allergy in mice is modulated through the thymic stromal lymphopoietin pathway. Clin Transl Allergy 6:2PubMedCrossRefGoogle Scholar
  35. Fuentes-Aparicio V, Alonso-Lebrero E, Zapatero L et al (2012) Oral immunotherapy in hen’s egg-allergic children increases a hypo-proliferative subset of CD4+ T cells that could constitute a marker of tolerance achievement. Pediatr Allergy Immunol 23:648–653PubMedCrossRefGoogle Scholar
  36. Fujimura KE, Sitarik AR, Havstad S et al (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187–1191PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gorelik M, Narisety SD, Guerrerio AL et al (2015) Suppression of the immunologic response to peanut during immunotherapy is often transient. J Allergy Clin Immunol 135:1283–1292PubMedCrossRefGoogle Scholar
  38. Grabenhenrich LB, Dölle S, Moneret-Vautrin A et al (2016) Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol 137:1128–1137 :.e1PubMedCrossRefGoogle Scholar
  39. Greenhawt MJ, Fleischer DM (2017) Primary prevention of food allergy. Curr Allergy Asthma Rep 17:26PubMedCrossRefGoogle Scholar
  40. Hochstadter E, Clarke A, De Schryver S et al (2016) Increasing visits for anaphylaxis and the benefits of early epinephrine administration: a 4-year study at a pediatric emergency department in Montreal, Canada. J Allergy Clin Immunol 137:1888–1890.e4PubMedCrossRefGoogle Scholar
  41. Hussain M, Borcard L, Walsh KP et al (2017) Basophil-derived interleukin-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol.
  42. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327PubMedCrossRefGoogle Scholar
  43. Jiang H, Hener P, Li J et al (2012) Skin thymic stromal lymphopoietin promotes airway sensitization to inhalant house dust mites leading to allergic asthma in mice. Allergy 67:1078–1082PubMedCrossRefGoogle Scholar
  44. Jones SM, Pons L, Roberts JL et al (2009) Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol 124:292–300 300.e1–97PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jones SM, Sicherer SH, Burks AW et al (2017) Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J Allergy Clin Immunol 139:1242–1252 :.e9PubMedCrossRefGoogle Scholar
  46. Jutel M, Akdis CA (2011) T-cell subset regulation in atopy. Curr Allergy Asthma Rep 11:139–145PubMedPubMedCentralCrossRefGoogle Scholar
  47. Karlsson MR, Rugtveit J, Brandtzaeg P (2004) Allergen-responsive CD4+ CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J Exp Med 199:1679–1688PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kattan J (2016) The prevalence and natural history of food allergy. Curr Allergy Asthma Rep 16:47PubMedCrossRefGoogle Scholar
  49. Kelleher MM, Dunn-Galvin A, Gray C et al (2016) Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol 137:1111–1116.e8PubMedCrossRefGoogle Scholar
  50. Kim EH, Bird JA, Kulis M et al (2011a) Sublingual immunotherapy for peanut allergy: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol 127:640–646 :.e1PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kim JS, Nowak-Wegrzyn A, Sicherer SH et al (2011b) Dietary baked milk accelerates the resolution of cow’s milk allergy in children. J Allergy Clin Immunol 128:125–131.e2PubMedPubMedCentralCrossRefGoogle Scholar
  52. Knaysi G, Smith AR, Wilson JM et al (2017) The skin as a route of allergen exposure: Part II. Allergens and role of the microbiome and environmental exposures. Curr Allergy Asthma Rep 17:7PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lack G, Fox D, Northstone K et al (2003) Factors associated with the development of peanut allergy in childhood. N Engl J Med 348:977–985PubMedCrossRefGoogle Scholar
  54. Lanser BJ, Wright BL, Orgel KA et al (2015) Current options for the treatment of food allergy. Pediatr Clin N Am 62:1531–1549CrossRefGoogle Scholar
  55. Li J, Wang Y, Tang L et al (2013) Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol 131:442–450PubMedCrossRefGoogle Scholar
  56. Licona-Limon P, Kim LK, Palm NW et al (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14:536–542PubMedCrossRefGoogle Scholar
  57. Luyt D, Ball H, Makwana N et al (2014) BSACI guideline for the diagnosis and management of cow’s milk allergy. Clin Exp Allergy 44:642–672PubMedCrossRefGoogle Scholar
  58. Mahesh PA, Wong GW, Ogorodova L et al (2016) Prevalence of food sensitization and probable food allergy among adults in India: the EuroPrevall INCO study. Allergy 71:1010–1019PubMedCrossRefGoogle Scholar
  59. Mayer E, Bannert C, Gruber S et al (2012) Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter. PLoS One 7:e29355PubMedPubMedCentralCrossRefGoogle Scholar
  60. Michaud B, Aroulandom J, Baiz N et al (2014) Casein-specific IL-4- and IL-13-secreting T cells: a tool to implement diagnosis of cow’s milk allergy. Allergy 69:1473–1480PubMedCrossRefGoogle Scholar
  61. Mitson-Salazar A, Yin Y, Wansley DL et al (2016) Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol 137:907–918.e9PubMedCrossRefGoogle Scholar
  62. Mobs C, Ipsen H, Mayer L et al (2012) Birch pollen immunotherapy results in long-term loss of Bet v 1-specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies. J Allergy Clin Immunol 130:1108–1116.e6PubMedCrossRefGoogle Scholar
  63. Moghaddam AE, Hillson WR, Noti M et al (2014) Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. J Allergy Clin Immunol 134:1453–1456PubMedPubMedCentralCrossRefGoogle Scholar
  64. Muraro A, Halken S, Arshad SH et al (2014) EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy 69:590–601PubMedCrossRefGoogle Scholar
  65. Noti M, Kim BS, Siracusa MC et al (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol 133:1390–1399 1399.e1–6PubMedPubMedCentralCrossRefGoogle Scholar
  66. Noval Rivas M, Burton OT, Oettgen HC et al (2016) IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol 138:801–811.e9PubMedCrossRefGoogle Scholar
  67. Nurmatov U, Dhami S, Arasi S et al (2017) Allergen immunotherapy for IgE-mediated food allergy: a systematic review and meta-analysis. Allergy 72:1133–1147PubMedCrossRefGoogle Scholar
  68. Nwaru BI, Hickstein L, Panesar SS et al (2014) Prevalence of common food allergies in Europe: a systematic review. and meta-analysis. Allergy 69:992–1007PubMedCrossRefGoogle Scholar
  69. Obersteiner A, Gilles S, Frank U et al (2016) Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS One 11:e0149545PubMedPubMedCentralCrossRefGoogle Scholar
  70. Paparo L, Nocerino R, Cosenza L et al (2016) Epigenetic features of FoxP3 in children with cow’s milk allergy. Clin Epigenetics 8:86PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pascal M, Konstantinou GN, Masilamani M et al (2013) In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin Exp Allergy 43:116–127PubMedCrossRefGoogle Scholar
  72. Perkin MR, Logan K, Marrs T et al (2016) randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med 374:1733–1743PubMedCrossRefGoogle Scholar
  73. Platzer B, Stout M, Fiebiger E (2015) Functions of dendritic-cell-bound IgE in allergy. Mol Immunol 68(2 Pt A):116–119PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ponce M, Diesner SC, Szepfalusi Z et al (2016) Markers of tolerance development to food allergens. Allergy 71:1393–1404PubMedCrossRefGoogle Scholar
  75. Poulsen LK, Ladics GS, McClain S et al (2014) Sensitizing properties of proteins: executive summary. Clin Transl Allergy 4:10PubMedPubMedCentralCrossRefGoogle Scholar
  76. Prussin C, Lee J, Foster B (2009) Eosinophilic gastrointestinal disease and peanut allergy are alternatively associated with IL-5+ and IL-5(−) T(H)2 responses. J Allergy Clin Immunol 124:1326–1332.e6PubMedPubMedCentralCrossRefGoogle Scholar
  77. Qamar N, Fishbein AB, Erickson KA et al (2015) Naturally occurring tolerance acquisition to foods in previously allergic children is characterized by antigen specificity and associated with increased subsets of regulatory T cells. Clin Exp Allergy 45:1663–1672PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ramesh M, Yuenyongviwat A, Konstantinou GN et al (2016) Peanut T-cell epitope discovery: Ara h 1. J Allergy Clin Immunol 137:1764–1771.e4PubMedCrossRefGoogle Scholar
  79. Renand A, Newbrough S, Wambre E et al (2014) Arginine kinase Pen m 2 as an important shrimp allergen recognized by TH2 cells. J Allergy Clin Immunol 134:1456–1459 :.e7PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ruiter B, Shreffler WG (2012) The role of dendritic cells in food allergy. J Allergy Clin Immunol 129:921–928PubMedCrossRefGoogle Scholar
  81. Ryan JF, Hovde R, Glanville J et al (2016) Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proc Natl Acad Sci USA 113:E1286–E1295PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sampson HA, Aceves S, Bock SA et al (2014) Food allergy: a practice parameter update-2014. J Allergy Clin Immunol 134:1016–1025.e43PubMedCrossRefGoogle Scholar
  83. Santos AF, James LK, Bahnson HT et al (2015) IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. J Allergy Clin Immunol 135:1249–1256PubMedPubMedCentralCrossRefGoogle Scholar
  84. Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4:196–203 quiz 204PubMedCrossRefGoogle Scholar
  85. Savilahti EM, Karinen S, Salo HM et al (2010) Combined T regulatory cell and Th2 expression profile identifies children with cow’s milk allergy. Clin Immunol 136:16–20PubMedCrossRefGoogle Scholar
  86. Shreffler WG, Wanich N, Moloney M et al (2009) Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J Allergy Clin Immunol 123:43–52.e7PubMedCrossRefGoogle Scholar
  87. Sicherer SH, Wood RA, Vickery BP et al (2014) The natural history of egg allergy in an observational cohort. J Allergy Clin Immunol 133:492–499PubMedPubMedCentralCrossRefGoogle Scholar
  88. Simons FE, Ebisawa M, Sanchez-Borges M et al (2015) 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J 8:32PubMedPubMedCentralCrossRefGoogle Scholar
  89. Simpson EL, Irvine AD et al (2016) Update on epidemiology, diagnosis, and disease course of atopic dermatitis. Semin Cutan Med Surg 35(5 Suppl):S84–S88CrossRefGoogle Scholar
  90. Smith PK, Masilamani M, Li XM et al (2017) The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol 139:429–437PubMedCrossRefGoogle Scholar
  91. Sommanus S, Kerddonfak S, Kamchaisatian W et al (2014) Cow’s milk protein allergy: immunological response in children with cow’s milk protein tolerance Asian Pac. J Allergy Immunol 32:171–177Google Scholar
  92. Soyka MB, Holzmann D, Basinski TM et al (2015) The Induction of IL-33 in the sinus epithelium and its influence on T-helper cell responses. PLoS One 10:e0123163PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stojadinovic M, Pieters R, Smit J et al (2014) Cross-linking of beta-lactoglobulin enhances allergic sensitization through changes in cellular uptake and processing. Toxicol Sci 140:224–235PubMedCrossRefGoogle Scholar
  94. Subbarayal B, Schiller D, Möbs C et al (2015) The diversity of Bet v 1-specific IgG4 antibodies remains mostly constant during the course of birch pollen immunotherapy. J Allergy Clin Immunol 136:1680–1682.e3PubMedCrossRefGoogle Scholar
  95. Syed A, Garcia MA, Lyu SC et al (2014) Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 133:500–510PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tiemessen MM, Van Ieperen-Van Dijk AG, Bruijnzeel-Koomen CA et al (2004) Cow’s milk-specific T-cell reactivity of children with and without persistent cow’s milk allergy: key role for IL-10. J Allergy Clin Immunol 113:932–939PubMedCrossRefGoogle Scholar
  97. Togias A, Cooper SF, Acebal ML et al (2017) Addendum guidelines for the prevention of peanut allergy in the United States: summary of the National Institute of Allergy and Infectious Diseases-sponsored expert panel. Pediatr Dermatol 34:5–12PubMedCrossRefGoogle Scholar
  98. Tordesillas L, Goswami R, Benedé S et al (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124:4965–4975PubMedPubMedCentralCrossRefGoogle Scholar
  99. Turcanu V, Maleki SJ, Lack G (2003) Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest 111:1065–1072PubMedPubMedCentralCrossRefGoogle Scholar
  100. Turcanu V, Winterbotham M, Kelleher P et al (2008) Peanut-specific B and T cell responses are correlated in peanut-allergic but not in non-allergic individuals. Clin Exp Allergy 38:1132–1139PubMedCrossRefGoogle Scholar
  101. van de Veen W, Stanic B, Yaman G et al (2013) IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol 131:1204–1212PubMedCrossRefGoogle Scholar
  102. Varshney P et al (2011) A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol 127:654–660PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vickery BP, Scurlock AM, Kulis M et al (2014) Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J Allergy Clin Immunol 133:468–475PubMedCrossRefGoogle Scholar
  104. Wambre E, Van Overtvelt L, Maillère B et al (2008) Single cell assessment of allergen-specific T cell responses with MHC class II peptide tetramers: methodological aspects. Int Arch Allergy Immunol 146:99–112PubMedCrossRefGoogle Scholar
  105. Wambre E, DeLong JH, James EA et al (2014) Specific immunotherapy modifies allergen-specific CD4(+) T-cell responses in an epitope-dependent manner. J Allergy Clin Immunol 133:872–879.e7PubMedCrossRefGoogle Scholar
  106. Wambre E, Bajzik V, DeLong JH et al (2017) A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med 9 pii:eaam9171PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wang YH (2016) Developing food allergy: a potential immunologic pathway linking skin barrier to gut. F1000Res 5 pii: F1000Google Scholar
  108. Werfel T, Asero R, Ballmer-Weber BK et al (2015) Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 70:1079–1090PubMedCrossRefGoogle Scholar
  109. Westerholm-Ormio M, Vaarala O, Tiittanen M et al (2010) Infiltration of Foxp3- and Toll-like receptor-4-positive cells in the intestines of children with food allergy. J Pediatr Gastroenterol Nutr 50:367–376PubMedGoogle Scholar
  110. Wisniewski JA, Commins SP, Agrawal R et al (2015) Analysis of cytokine production by peanut-reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy. Clin Exp Allergy 45:1201–1213PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wood RA, Sicherer SH, Vickery BP et al (2013) The natural history of milk allergy in an observational cohort. J Allergy Clin Immunol 131:805–812PubMedCrossRefGoogle Scholar
  112. Wood RA, Kim JS, Lindblad R et al (2016) A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J Allergy Clin Immunol 137:1103–1110.e11PubMedCrossRefGoogle Scholar
  113. Worm M, Moneret-Vautrin A, Scherer K et al (2014) First European data from the network of severe allergic reactions (NORA). Allergy 69:1397–1404PubMedCrossRefGoogle Scholar
  114. Wright BL, Kulis M, Orgel KA et al (2016) Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. Allergy 71:1552–1560PubMedPubMedCentralCrossRefGoogle Scholar
  115. Xie J, Lotoski LC, Chooniedass R et al (2012) Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One 7:e45377PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhang H, Kong H, Zeng X et al (2014) Subsets of regulatory T cells and their roles in allergy. J Transl Med 12:125PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2017

Authors and Affiliations

  1. 1.Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
  2. 2.Department of Hospital Pediatrics No. 1, Clinical AllergologyTashkent Pediatric Medical InstituteTashkentUzbekistan
  3. 3.Food Allergy and Anaphylaxis Program, Division of Immunology and Allergy, The Department of PaediatricsThe Hospital for Sick ChildrenTorontoCanada
  4. 4.Translational Medicine Program, Research InstituteThe Hospital for Sick ChildrenTorontoCanada
  5. 5.Department of Pediatrics and Department of ImmunologyThe University of TorontoTorontoCanada

Personalised recommendations