The Impact of Di(2-ethylhexyl)phthalate on Cancer Progression

  • Chon-Kit Chou
  • Ya-Ting Yang
  • Ho-Chun Yang
  • Shih-Shin Liang
  • Tsu-Nai Wang
  • Po-Lin Kuo
  • Hui-Min David Wang
  • Eing-Mei Tsai
  • Chien-Chih Chiu


Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer, mainly serves as an additive to render polyvinyl chloride (PVC) soft and flexible. PVC plastics have become ubiquitous in our modern society. Yet, the leaching of DEHP from PVC-based consumables ultimately results in the deposition in certain tissues via inadvertent applications. Health risks for human populations exposed to DEHP has been assumed by studies on rodents and other species, including the DEHP-induced developmental dysregulation, reproductive impairments, tumorigenesis, and diseases in a transgenerational manner. In this review, we comprehensively summarize the accumulated literature regarding the multifaceted roles of DEHP in the activation of the nuclear receptors, the alteration of the redox homeostasis, epigenetic modifications and the acquisition of chemoresistance.


DEHP Tumorigenesis Nuclear receptors Redox homeostasis Epigenetic modifications Chemoresistance 



The study was financially supported by Grant nos. NSC102-2632-B-037-001-MY3, MOST105-2311-B-037-001 and MOST106-2320-B-037-012 from the National Science Council, Taiwan, Ministry of Science and Technology, Taiwan; KMU-TP103A17, KMU-TP104A3 and KMU-TP105A07 by the grant Aim for the Top Universities Grant; Grant nos. NSYSU-KMU105-P017 and NSYSU-KMU106-P019 from the NSYSU-KMU Joint Research Project, Kaohsiung Medical University, Taiwan.


  1. Abdullah LN, Chow EK (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abel J, Haarmann-Stemmann T (2010) An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 391:1235–1248PubMedCrossRefGoogle Scholar
  3. Akingbemi BT, Youker RT, Sottas CM et al (2001) Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 65:1252–1259PubMedCrossRefGoogle Scholar
  4. Akingbemi BT, Ge R, Klinefelter GR et al (2004) Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc Natl Acad Sci USA 101:775–780PubMedPubMedCentralCrossRefGoogle Scholar
  5. Albro PW, Lavenhar SR (1989) Metabolism of di(2-ethylhexyl)phthalate. Drug Metab Rev 21:13–34PubMedCrossRefGoogle Scholar
  6. Albro PW, Hass JR, Peck CC et al (1982) Applications of isotope differentiation for metabolic studies with di-(2-ethylhexyl) phthalate. J Environ Sci Health B 17:701–714PubMedCrossRefGoogle Scholar
  7. Andrade AJ, Grande SW, Talsness CE et al (2006) A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): effects on androgenic status, developmental landmarks and testicular histology in male offspring rats. Toxicology 225:64–74PubMedCrossRefGoogle Scholar
  8. Angelini A, Centurione L, Sancilio S et al (2011) The effect of the plasticizer diethylhexyl phthalate on transport activity and expression of P-glycoprotein in parental and doxo-resistant human sarcoma cell lines. J Biol Regul Homeost Agents 25:203–211PubMedGoogle Scholar
  9. Asai D, Tahara Y, Nakai M et al (2000) Structural essentials of xenoestrogen dialkyl phthalates to bind to the estrogen receptors. Toxicol Lett 118:1–8PubMedCrossRefGoogle Scholar
  10. Barber ED, Astill BD, Moran EJ et al (1987) Peroxisome induction studies on seven phthalate esters. Toxicol Ind Health 3:7–24PubMedCrossRefGoogle Scholar
  11. Barr DB, Silva MJ, Kato K et al (2003) Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect 111:1148–1151PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bility MT, Thompson JT, McKee RH et al (2004) Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicol Sci 82:170–182PubMedCrossRefGoogle Scholar
  13. Blom A, Ekman E, Johannisson A et al (1998) Effects of xenoestrogenic environmental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Arch Environ Contam Toxicol 34:306–310PubMedCrossRefGoogle Scholar
  14. Borch J, Dalgaard M, Ladefoged O (2005) Early testicular effects in rats perinatally exposed to DEHP in combination with DEHA—apoptosis assessment and immunohistochemical studies. Reprod Toxicol 19:517–525PubMedCrossRefGoogle Scholar
  15. Borch J, Metzdorff SB, Vinggaard AM et al (2006) Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology 223:144–155PubMedCrossRefGoogle Scholar
  16. Botelho GG, Bufalo AC, Boareto AC et al (2009) Vitamin C and resveratrol supplementation to rat dams treated with di(2-ethylhexyl)phthalate: impact on reproductive and oxidative stress end points in male offspring. Arch Environ Contam Toxicol 57:785–793PubMedCrossRefGoogle Scholar
  17. Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366PubMedCrossRefGoogle Scholar
  18. Carpenter CP, Weil CS, Smyth HF Jr (1953) Chronic oral toxicity of di-(2-ethylhexyl) phthalate of rats, guinea pigs, and dogs. AMA Arch Ind Hyg Occup Med 8:219–226PubMedGoogle Scholar
  19. Cattley RC, Conway JG, Popp JA (1987) Association of persistent peroxisome proliferation and oxidative injury with hepatocarcinogenicity in female F-344 rats fed di(2-ethylhexyl)phthalate for 2 years. Cancer Lett 38:15–22PubMedCrossRefGoogle Scholar
  20. Chen FP, Chien MH (2014) Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric 17:377–384PubMedCrossRefGoogle Scholar
  21. Chen ML, Chen JS, Tang CL et al (2008) The internal exposure of Taiwanese to phthalate–an evidence of intensive use of plastic materials. Environ Int 34:79–85PubMedCrossRefGoogle Scholar
  22. Chen X, Liu YN, Zhou QH et al (2013) Effects of low concentrations of di-(2-ethylhexyl) and mono-(2-ethylhexyl) phthalate on steroidogenesis pathways and apoptosis in the murine leydig tumor cell line MLTC-1. Biomed Environ Sci 26:986–989PubMedGoogle Scholar
  23. Chiazze L Jr, Ference LD (1981) Mortality among PVC-fabricating employees. Environ Health Perspect 41:137–143PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choi K, Joo H, Campbell JL Jr et al (2012) In vitro metabolism of di(2-ethylhexyl) phthalate (DEHP) by various tissues and cytochrome P450s of human and rat. Toxicol In Vitro 26:315–322PubMedCrossRefGoogle Scholar
  25. Corton JC, Lapinskas PJ, Gonzalez FJ (2000) Central role of PPARalpha in the mechanism of action of hepatocarcinogenic peroxisome proliferators. Mutat Res 448:139–151PubMedCrossRefGoogle Scholar
  26. Dalsenter PR, Santana GM, Grande SW et al (2006) Phthalate affect the reproductive function and sexual behavior of male Wistar rats. Hum Exp Toxicol 25:297–303PubMedCrossRefGoogle Scholar
  27. Dansen TB, Wirtz KW (2001) The peroxisome in oxidative stress. IUBMB Life 51:223–230PubMedCrossRefGoogle Scholar
  28. David RM, Moore MR, Cifone MA et al (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di(2-ethylhexyl)phthalate and the effects of recovery. Toxicol Sci 50:195–205PubMedCrossRefGoogle Scholar
  29. David RM, Moore MR, Finney DC et al (2000a) Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci 58:377–385PubMedCrossRefGoogle Scholar
  30. David RM, Moore MR, Finney DC et al (2000b) Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci 55:433–443PubMedCrossRefGoogle Scholar
  31. DeKeyser JG, Stagliano MC, Auerbach SS et al (2009) Di(2-ethylhexyl) phthalate is a highly potent agonist for the human constitutive androstane receptor splice variant CAR2. Mol Pharmacol 75:1005–1013PubMedPubMedCentralCrossRefGoogle Scholar
  32. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334PubMedCrossRefGoogle Scholar
  33. Doull J, Cattley R, Elcombe C et al (1999) A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA risk assessment guidelines. Regul Toxicol Pharmacol 29:327–357PubMedCrossRefGoogle Scholar
  34. Doyle TJ, Bowman JL, Windell VL et al (2013) Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 88:112PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dzhekova-Stojkova S, Bogdanska J, Stojkova Z (2001) Peroxisome proliferators: their biological and toxicological effects. Clin Chem Lab Med 39:468–474PubMedCrossRefGoogle Scholar
  36. Eagon PK, Chandar N, Epley MJ et al (1994) Di(2-ethylhexyl)phthalate-induced changes in liver estrogen metabolism and hyperplasia. Int J Cancer 58:736–743PubMedCrossRefGoogle Scholar
  37. Eagon PK, Teepe AG, Elm MS et al (1999) Hepatic hyperplasia and cancer in rats: alterations in copper metabolism. Carcinogenesis 20:1091–1096PubMedCrossRefGoogle Scholar
  38. Erkekoglu P, Kocer-Gumusel B (2014) Genotoxicity of phthalates. Toxicol Mech Methods 24:616–626PubMedCrossRefGoogle Scholar
  39. Erkekoglu P, Zeybek ND, Giray BK et al (2014) The effects of di(2-ethylhexyl)phthalate on rat liver in relation to selenium status. Int J Exp Pathol 95:64–77PubMedCrossRefGoogle Scholar
  40. Ernst J, Jann JC, Biemann R et al (2014) Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Mol Hum Reprod 20:919–928PubMedCrossRefGoogle Scholar
  41. Falconer IR, Chapman HF, Moore MR et al (2006) Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ Toxicol 21:181–191PubMedCrossRefGoogle Scholar
  42. Fay M, Donohue JM, De Rosa C (1999) ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for toxic substances and disease registry. Toxicol Ind Health 15:651–746PubMedCrossRefGoogle Scholar
  43. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523PubMedCrossRefGoogle Scholar
  45. Fong JP, Lee FJ, Lu IS et al (2014) Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring. Int J Hyg Environ Health 217:102–109PubMedCrossRefGoogle Scholar
  46. Ge RS, Chen GR, Dong Q et al (2007) Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J Androl 28:513–520PubMedCrossRefGoogle Scholar
  47. Gillum N, Karabekian Z, Swift LM et al (2009) Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicol Appl Pharmacol 236:25–38PubMedPubMedCentralCrossRefGoogle Scholar
  48. Go RE, Hwang KA, Choi KC (2015) Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol 147:24–30PubMedCrossRefGoogle Scholar
  49. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627PubMedCrossRefGoogle Scholar
  50. Gray TJ, Gangolli SD (1986) Aspects of the testicular toxicity of phthalate esters. Environ Health Perspect 65:229–235PubMedPubMedCentralGoogle Scholar
  51. Gray TJ, Beamand JA, Lake BG et al (1982) Peroxisome proliferation in cultured rat hepatocytes produced by clofibrate and phthalate ester metabolites. Toxicol Lett 10:273–279PubMedCrossRefGoogle Scholar
  52. Gray TJ, Lake BG, Beamand JA et al (1983) Peroxisomal effects of phthalate esters in primary cultures of rat hepatocytes. Toxicology 28:167–179PubMedCrossRefGoogle Scholar
  53. Gray LE Jr, Ostby J, Furr J et al (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58:350–365PubMedCrossRefGoogle Scholar
  54. Hagmar L, Akesson B, Nielsen J et al (1990) Mortality and cancer morbidity in workers exposed to low levels of vinyl chloride monomer at a polyvinyl chloride processing plant. Am J Ind Med 17:553–565PubMedCrossRefGoogle Scholar
  55. Hajkova P, Ancelin K, Waldmann T et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881PubMedCrossRefGoogle Scholar
  56. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194PubMedCrossRefGoogle Scholar
  57. Hardell L, Ohlson CG, Fredrikson M (1997) Occupational exposure to polyvinyl chloride as a risk factor for testicular cancer evaluated in a case-control study. Int J Cancer 73:828–830PubMedCrossRefGoogle Scholar
  58. Harris RS, Hodge HC, Maynard EA et al (1956) Chronic oral toxicity of 2-ethylhexyl phthalate in rats and dogs. AMA Arch Ind Health 13:259–264PubMedGoogle Scholar
  59. Harris CA, Henttu P, Parker MG et al (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105:802–811PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hayashi F, Tamura H, Yamada J et al (1994) Characteristics of the hepatocarcinogenesis caused by dehydroepiandrosterone, a peroxisome proliferator, in male F-344 rats. Carcinogenesis 15:2215–2219PubMedCrossRefGoogle Scholar
  61. Hines CJ, Hopf NB, Deddens JA et al (2011) Estimated daily intake of phthalates in occupationally exposed groups. J Expo Sci Environ Epidemiol 21:133–141PubMedCrossRefGoogle Scholar
  62. Hokanson R, Hanneman W, Hennessey M et al (2006) DEHP, bis(2)-ethylhexyl phthalate, alters gene expression in human cells: possible correlation with initiation of fetal developmental abnormalities. Hum Exp Toxicol 25:687–695PubMedCrossRefGoogle Scholar
  63. Holohan C, Van Schaeybroeck S, Longley DB et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726PubMedCrossRefGoogle Scholar
  64. Hong EJ, Ji YK, Choi KC et al (2005) Conflict of estrogenic activity by various phthalates between in vitro and in vivo models related to the expression of Calbindin-D9k. J Reprod Dev 51:253–263PubMedCrossRefGoogle Scholar
  65. Howdeshell KL, Furr J, Lambright CR et al (2007) Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 99:190–202PubMedCrossRefGoogle Scholar
  66. Huang PC, Tsai CH, Liang WY et al (2015) Age and gender differences in urinary levels of eleven phthalate metabolites in general taiwanese population after a DEHP episode. PLoS One 10:e0133782PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hurst CH, Waxman DJ (2003) Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci 74:297–308PubMedCrossRefGoogle Scholar
  68. Hwang DY, Cho JS, Oh JH et al (2005) An in vivo bioassay for detecting antiandrogens using humanized transgenic mice coexpressing the tetracycline-controlled transactivator and human CYP1B1 gene. Int J Toxicol 24:157–164PubMedCrossRefGoogle Scholar
  69. Ito Y, Yamanoshita O, Asaeda N et al (2007) Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J Occup Health 49:172–182PubMedCrossRefGoogle Scholar
  70. Ito Y, Nakamura T, Yanagiba Y et al (2012) Plasticizers may activate human hepatic peroxisome proliferator-activated receptor alpha less than that of a mouse but may activate constitutive androstane receptor in liver. PPAR Res 2012:201284Google Scholar
  71. Johnson DR, Klaassen CD (2002) Regulation of rat multidrug resistance protein 2 by classes of prototypical microsomal enzyme inducers that activate distinct transcription pathways. Toxicol Sci 67:182–189PubMedCrossRefGoogle Scholar
  72. Johnson EF, Hsu MH, Savas U et al (2002) Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology 181–182:203–206PubMedCrossRefGoogle Scholar
  73. Kambia K, Dine T, Gressier B et al (2003) Induction of propranolol metabolism in isolated rats hepatocytes treated by di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP). Eur J Drug Metab Pharmacokinet 28:217–222PubMedCrossRefGoogle Scholar
  74. Kang ER, Iqbal K, Tran DA et al (2011) Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics 6:937–950PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kim IY, Han SY, Moon A (2004) Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells. J Toxicol Environ Health A 67:2025–2035PubMedCrossRefGoogle Scholar
  76. Kim NY, Kim TH, Lee E et al (2010) Functional role of phospholipase D (PLD) in di(2-ethylhexyl) phthalate-induced hepatotoxicity in Sprague-Dawley rats. J Toxicol Environ Health A 73:1560–1569PubMedCrossRefGoogle Scholar
  77. Kirshner JR, He S, Balasubramanyam V et al (2008) Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther 7:2319–2327PubMedCrossRefGoogle Scholar
  78. Kluwe WM, Haseman JK, Douglas JF et al (1982) The carcinogenicity of dietary di(2-ethylhexyl) phthalate (DEHP) in Fischer 344 rats and B6C3F1 mice. J Toxicol Environ Health 10:797–815PubMedCrossRefGoogle Scholar
  79. Knapp P, Jarzabek K, Blachnio A et al (2006) The role of peroxisome proliferator-activated receptors (PPAR) in carcinogenesis. Ginekol Pol 77:643–651PubMedGoogle Scholar
  80. Koch HM, Drexler H, Angerer J (2003a) An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83PubMedCrossRefGoogle Scholar
  81. Koch HM, Rossbach B, Drexler H et al (2003b) Internal exposure of the general population to DEHP and other phthalates–determination of secondary and primary phthalate monoester metabolites in urine. Environ Res 93:177–185PubMedCrossRefGoogle Scholar
  82. Kono T, Obata Y, Wu Q et al (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864PubMedCrossRefGoogle Scholar
  83. Kruger T, Long M, Bonefeld-Jorgensen EC (2008) Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology 246:112–123PubMedCrossRefGoogle Scholar
  84. Lake BG, Gray TJ, Lewis DF et al (1987) Structure-activity relationships for induction of peroxisomal enzyme activities by phthalate monoesters in primary rat hepatocyte cultures. Toxicol Ind Health 3:165–183PubMedCrossRefGoogle Scholar
  85. Lapinskas PJ, Brown S, Leesnitzer LM et al (2005) Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology 207:149–163PubMedCrossRefGoogle Scholar
  86. LaRocca J, Binder AM, McElrath TF et al (2014) The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res 133:396–406PubMedPubMedCentralCrossRefGoogle Scholar
  87. Law MY, Moody DE (1991) In vitro inhibition of mouse and rat glutathione S-transferases by di(2-ethylhexyl) phthalate, mono(2-ethylhexyl) phthalate, 2-ethylhexanol, 2-ethylhexanoic acid and clofibric acid. Toxicol In Vitro 5:207–210PubMedCrossRefGoogle Scholar
  88. Lee FI, Harry DS (1974) Angiosarcoma of the liver in a vinyl-chloride worker. Lancet 1:1316–1318PubMedCrossRefGoogle Scholar
  89. Lee HK, Kim TS, Kim CY et al (2012) Evaluation of in vitro screening system for estrogenicity: comparison of stably transfected human estrogen receptor-alpha transcriptional activation (OECD TG455) assay and estrogen receptor (ER) binding assay. J Toxicol Sci 37:431–437PubMedCrossRefGoogle Scholar
  90. Lemberger T, Braissant O, Juge-Aubry C et al (1996) PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci 804:231–251PubMedCrossRefGoogle Scholar
  91. Lhuguenot JC, Mitchell AM, Milner G et al (1985) The metabolism of di(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) in rats: in vivo and in vitro dose and time dependency of metabolism. Toxicol Appl Pharmacol 80:11–22PubMedCrossRefGoogle Scholar
  92. Li L, Zhang T, Qin XS et al (2014) Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep 41:1227–1235PubMedCrossRefGoogle Scholar
  93. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292PubMedCrossRefGoogle Scholar
  94. Lopez-Carrillo L, Hernández-Ramírez RU, Calafat AM et al (2010) Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118:539–544PubMedCrossRefGoogle Scholar
  95. Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16:466–476PubMedCrossRefGoogle Scholar
  96. Maloney EK, Waxman DJ (1999) trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161:209–218PubMedCrossRefGoogle Scholar
  97. Manikkam M, Tracey R, Guerrero-Bosagna C et al (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mann AH, Price SC, Mitchell FE et al (1985) Comparison of the short-term effects of di(2-ethylhexyl) phthalate, di(n-hexyl) phthalate, and di(n-octyl) phthalate in rats. Toxicol Appl Pharmacol 77:116–132PubMedCrossRefGoogle Scholar
  99. Melis JP, Kuiper RV, Zwart E et al (2013) Slow accumulation of mutations in Xpc−/− mice upon induction of oxidative stress. DNA Repair 12:1081–1086PubMedCrossRefGoogle Scholar
  100. Melnick RL (2001) Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of di(2-ethylhexyl)phthalate (DEHP)? Environ Health Perspect 109:437–442PubMedPubMedCentralCrossRefGoogle Scholar
  101. Michael M, Doherty MM (2005) Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Oncol 23:205–229PubMedCrossRefGoogle Scholar
  102. Mitchell AM, Lhuguenot JC, Bridges JW et al (1985a) Identification of the proximate peroxisome proliferator(s) derived from di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 80:23–32PubMedCrossRefGoogle Scholar
  103. Mitchell FE, Price SC, Hinton RH et al (1985b) Time and dose-response study of the effects on rats of the plasticizer di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 81(3 Pt):371–392PubMedCrossRefGoogle Scholar
  104. Miyamoto M, Sasakawa S (1987) Effects of plasticizers and plastic bags on granulocyte function during storage. Vox Sang 53:19–22PubMedCrossRefGoogle Scholar
  105. Monson RR, Peters JM, Johnson MN (1974) Proportional mortality among vinyl-chloride workers. Lancet 2:397–398PubMedCrossRefGoogle Scholar
  106. Moody DE, Reddy JK, Lake BG et al (1991) Peroxisome proliferation and nongenotoxic carcinogenesis: commentary on a symposium. Fundam Appl Toxicol 16:233–248PubMedCrossRefGoogle Scholar
  107. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465PubMedCrossRefGoogle Scholar
  108. Murray GI, Taylor MC, McFadyen MC et al (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031PubMedGoogle Scholar
  109. National Toxicology P (1982) Carcinogenesis bioassay of Di(2-ethylhexyl)phthalate (CAS No. 117-81-7) in F344 rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 217:1–127Google Scholar
  110. Ohashi A, Kotera H, Hori H et al (2005) Evaluation of endocrine disrupting activity of plasticizers in polyvinyl chloride tubes by estrogen receptor alpha binding assay. J Artif Organs 8:252–256PubMedCrossRefGoogle Scholar
  111. Okubo T, Suzuki T, Yokoyama Y et al (2003) Estimation of estrogenic and anti-estrogenic activities of some phthalate diesters and monoesters by MCF-7 cell proliferation assay in vitro. Biol Pharm Bull 26:1219–1224PubMedCrossRefGoogle Scholar
  112. Omiecinski CJ, Remmel RP, Hosagrahara VP (1999) Concise review of the cytochrome P450s and their roles in toxicology. Toxicol Sci 48:151–156PubMedCrossRefGoogle Scholar
  113. Osumi T, Hashimoto T (1978) Enhancement of fatty acyl-CoA oxidizing activity in rat liver peroxisomes by di-(2-ethylhexyl)phthalate. J Biochem 83:1361–1365PubMedCrossRefGoogle Scholar
  114. Palmer CN, Hsu MH, Griffin KJ et al (1998) Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 53:14–22PubMedCrossRefGoogle Scholar
  115. Palut D (1997) Proliferation of peroxisomes and the hepatocarcinogenic process. Rocz Panstwowego Zakl Hig 48:1–11Google Scholar
  116. Parks LG, Ostby JS, Lambright CR et al (2000) The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 58:339–349PubMedCrossRefGoogle Scholar
  117. Posnack NG, Idrees R, Ding H et al (2015) Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes. PLoS One 10:e0121927PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pradeep S, Benjamin S (2012) Mycelial fungi completely remediate di(2-ethylhexyl)phthalate, the hazardous plasticizer in PVC blood storage bag. J Hazard Mater 235–236:69–77PubMedCrossRefGoogle Scholar
  119. Rajesh P, Balasubramanian K (2014) Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol 223:47–66PubMedCrossRefGoogle Scholar
  120. Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8:631–636PubMedCrossRefGoogle Scholar
  121. Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21:193–230PubMedCrossRefGoogle Scholar
  122. Sarath Josh MK, Pradeep S, Vijayalekshmi Amma KS et al (2014) Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor alpha, beta, gamma subtypes: an in silico approach. J Appl Toxicol 34:754–765PubMedCrossRefGoogle Scholar
  123. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140PubMedCrossRefGoogle Scholar
  124. Schmid P, Schlatter C (1985) Excretion and metabolism of di(2-ethylhexyl)phthalate in man. Xenobiotica 15:251–256PubMedCrossRefGoogle Scholar
  125. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109PubMedCrossRefGoogle Scholar
  126. Selenskas S, Teta MJ, Vitale JN (1995) Pancreatic cancer among workers processing synthetic resins. Am J Ind Med 28:385–398PubMedCrossRefGoogle Scholar
  127. Shelby MD (2006) NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP). Ntp Cerhr Mon (18):v (vii–7, II–iii–xiii passim) Google Scholar
  128. Simard J, Ricketts ML, Gingras S et al (2005) Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26:525–582PubMedCrossRefGoogle Scholar
  129. Sims JN, Graham B, Pacurari M et al (2014) Di-ethylhexylphthalate (DEHP) modulates cell invasion, migration and anchorage independent growth through targeting S100P in LN-229 glioblastoma cells. Int J Environ Res Public Health 11:5006–5019PubMedPubMedCentralCrossRefGoogle Scholar
  130. Soule HD, Vazguez J, Long A et al (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416PubMedCrossRefGoogle Scholar
  131. Stroheker T, Cabaton N, Nourdin G et al (2005) Evaluation of anti-androgenic activity of di-(2-ethylhexyl)phthalate. Toxicology 208:115–121PubMedCrossRefGoogle Scholar
  132. Svechnikov K, Landreh L, Weisser J et al (2010) Origin, development and regulation of human Leydig cells. Horm Res Paediatr 73:93–101PubMedCrossRefGoogle Scholar
  133. Tabershaw IR, Gaffey WR (1974) Mortality study of workers in the manufacture of vinyl chloride and its polymers. J Occup Med 16:509–518PubMedCrossRefGoogle Scholar
  134. Takeshita A, Inagaki K, Igarashi-Migitaka J et al (2006) The endocrine disrupting chemical, diethylhexyl phthalate, activates MDR1 gene expression in human colon cancer LS174T cells. J Endocrinol 190:897–902PubMedCrossRefGoogle Scholar
  135. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34:753–764PubMedCrossRefGoogle Scholar
  136. Tamura H, Iida T, Watanabe T et al (1990) Long-term effects of hypolipidemic peroxisome proliferator administration on hepatic hydrogen peroxide metabolism in rats. Carcinogenesis 11:445–450PubMedCrossRefGoogle Scholar
  137. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591PubMedCrossRefGoogle Scholar
  138. Tugwood JD, Aldridge TC, Lambe KG et al (1996) Peroxisome proliferator-activated receptors: structures and function. Ann N Y Acad Sci 804:252–265PubMedCrossRefGoogle Scholar
  139. Tuma RS (2008) Reactive oxygen species may have antitumor activity in metastatic melanoma. J Natl Cancer Inst 100:11–12PubMedCrossRefGoogle Scholar
  140. van Ommen B, Bogaards JJ, Peters WH et al (1990) Quantification of human hepatic glutathione S-transferases. Biochem J 269:609–613PubMedPubMedCentralCrossRefGoogle Scholar
  141. Vasquez-Vivar J, Martasek P, Hogg N et al (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 36:11293–11297PubMedCrossRefGoogle Scholar
  142. Vo TT, Jung EM, Dang VH et al (2009) Differential effects of flutamide and di-(2-ethylhexyl) phthalate on male reproductive organs in a rat model. J Reprod Dev 55:400–411PubMedCrossRefGoogle Scholar
  143. Voskoboinik I, Drew R, Ahokas JT (1996) Differential effect of peroxisome proliferators on rat glutathione S-transferase isoenzymes. Toxicol Lett 87:147–155PubMedCrossRefGoogle Scholar
  144. Voskoboinik I, Ooi SG, Drew R et al (1997) Peroxisome proliferators increase the formation of BPDE-DNA adducts in isolated rat hepatocytes. Toxicology 122:81–91PubMedCrossRefGoogle Scholar
  145. Voss C, Zerban H, Bannasch P et al (2005) Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats. Toxicology 206:359–371PubMedCrossRefGoogle Scholar
  146. Wang B, Zhou SF (2009) Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem 16:4066–4218PubMedCrossRefGoogle Scholar
  147. Wang Q, Fujii H, Knipp GT (2002) Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 23:661–671PubMedCrossRefGoogle Scholar
  148. Wang Z, Li Y, Ahmad A et al (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33PubMedCrossRefGoogle Scholar
  149. Wang YC, Chen HS, Long CY et al (2012) Possible mechanism of phthalates-induced tumorigenesis. Kaohsiung J Med Sci 28(7 suppl):S22–S27PubMedCrossRefGoogle Scholar
  150. Ward JM, Peters JM, Perella CM et al (1998) Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice. Toxicol Pathol 26:240–246PubMedCrossRefGoogle Scholar
  151. Wilson VS, Howdeshell KL, Lambright CS et al (2007) Differential expression of the phthalate syndrome in male Sprague-Dawley and Wistar rats after in utero DEHP exposure. Toxicol Lett 170:177–184PubMedCrossRefGoogle Scholar
  152. Wu MT, Wu CF, Wu JR et al (2012) The public health threat of phthalate-tainted foodstuffs in Taiwan: the policies the government implemented and the lessons we learned. Environ Int 44:75–79PubMedCrossRefGoogle Scholar
  153. Yamazaki H, Shimada T (1999) Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica 29:231–241PubMedCrossRefGoogle Scholar
  154. Yen TH, Lin-Tan DT, Lin JL (2011) Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizer-containing clouding agents. J Formos Med Assoc 110:671–684PubMedCrossRefGoogle Scholar
  155. Zhang Y, Ge R, Hardy MP (2008) Androgen-forming stem Leydig cells: identification, function and therapeutic potential. Dis Markers 24:277–286PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zhang S, Ma J, Fu Z et al (2016) Promotion of breast cancer cells MDA-MB-231 invasion by di(2-ethylhexyl)phthalate through matrix metalloproteinase-2/-9 overexpression. Environ Sci Pollut Res Int 23:9742–9749PubMedCrossRefGoogle Scholar
  157. Zhu H, Zheng J, Xiao X et al (2010) Environmental endocrine disruptors promote invasion and metastasis of SK-N-SH human neuroblastoma cells. Oncol Rep 23:129–139PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2017

Authors and Affiliations

  1. 1.Graduate Institute of Natural ProductsKaohsiung Medical UniversityKaohsiungTaiwan
  2. 2.Department of BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Center of Excellence for Environmental MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of Public Health, College of Health ScienceKaohsiung Medical UniversityKaohsiungTaiwan
  5. 5.Institute of Clinical Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  6. 6.Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  7. 7.Headquarters of Research CentersKaohsiung Medical UniversityKaohsiungTaiwan
  8. 8.Department of Obstetrics and GynecologyKaohsiung Medical University HospitalKaohsiungTaiwan
  9. 9.Department of Biological SciencesNational Sun Yat-sen UniversityKaohsiungTaiwan
  10. 10.Department of Medical Research, Translational Research CenterKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
  11. 11.Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan

Personalised recommendations