Regulation of Atherogenesis by Chemokines and Chemokine Receptors

  • Wuzhou Wan
  • Philip M. Murphy


Atherosclerosis is a chronic inflammatory and metabolic disorder affecting large- and medium-sized arteries, and the leading cause of mortality worldwide. The pathogenesis of atherosclerosis involves accumulation of lipids and leukocytes in the intima of blood vessel walls creating plaque. How leukocytes accumulate in plaque remains poorly understood; however, chemokines acting at specific G protein-coupled receptors appear to be important. Studies using knockout mice suggest that chemokine receptor signaling may either promote or inhibit atherogenesis, depending on the receptor. These proof of concept studies have spurred efforts to develop drugs targeting the chemokine system in atherosclerosis, and several have shown beneficial effects in animal models. This study will review key discoveries in basic and translational research in this area.


Atherosclerosis Cardiology Immunology Inflammation Antagonist 



This work was supported by the Intramural Research Program of the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (Bethesda, MD, USA).

Conflict of interest


Note added in proof

We have recently reported that Ccr7-deficient ApoE knockout mice fed a Western diet have markedly increased atherosclerotic plaque. This effect was due to Ccr7 expression on a bone marrow-derived cell and was associated with increased lesional and blood T cells. (Reference: Wan W, Lionakis MS, Liu Q et al (2012) Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc Res PMID: 23180724).


  1. Abi-Younes S, Sauty A, Mach F et al (2000) The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 86:131–138PubMedGoogle Scholar
  2. Aiello RJ, Bourassa PA, Lindsey S et al (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19:1518–1525PubMedGoogle Scholar
  3. Aiello RJ, Perry BD, Bourassa PA et al (2010) CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in apoE(−/−) mice. Atherosclerosis 208:370–375PubMedGoogle Scholar
  4. Ali ZA, Bursill CA, Hu Y et al (2005) Gene transfer of a broad spectrum CC-chemokine inhibitor reduces vein graft atherosclerosis in apolipoprotein E-knockout mice. Circulation 112:I235–I1241PubMedGoogle Scholar
  5. Apostolakis S, Krambovitis E, Vlata Z et al (2007) CX3CR1 receptor is up-regulated in monocytes of coronary artery diseased patients: impact of pre-inflammatory stimuli and renin–angiotensin system modulators. Thromb Res 121:387–395PubMedGoogle Scholar
  6. Apostolopoulos J, Davenport P, Tipping PG (1996) Interleukin-8 production by macrophages from atheromatous plaques. Arterioscler Thromb Vasc Biol 16:1007–1012PubMedGoogle Scholar
  7. Aslanian AM, Charo IF (2006) Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114:583–590PubMedGoogle Scholar
  8. Baba M, Nishimura O, Kanzaki N et al (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703PubMedGoogle Scholar
  9. Barlic J, Murphy PM (2007a) Chemokine regulation of atherosclerosis. J Leukoc Biol 82:226–236PubMedGoogle Scholar
  10. Barlic J, Murphy PM (2007b) An oxidized lipid-peroxisome proliferator-activated receptor gamma-chemokine pathway in the regulation of macrophage-vascular smooth muscle cell adhesion. Trends Cardiovasc Med 17:269–274PubMedGoogle Scholar
  11. Barlic J, Zhu W, Murphy PM (2009) Atherogenic lipids induce high-density lipoprotein uptake and cholesterol efflux in human macrophages by up-regulating transmembrane chemokine CXCL16 without engaging CXCL16-dependent cell adhesion. J Immunol 182:7928–7936PubMedGoogle Scholar
  12. Bazan JF, Bacon KB, Hardiman G et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644PubMedGoogle Scholar
  13. Berger JS, Jordan CO, Lloyd-Jones D et al (2010) Screening for cardiovascular risk in asymptomatic patients. J Am Coll Cardiol 55:1169–1177PubMedGoogle Scholar
  14. Boger CA, Fischereder M, Deinzer M et al (2005) RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients. Atherosclerosis 183:121–129PubMedGoogle Scholar
  15. Boisvert WA, Santiago R, Curtiss LK et al (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101:353–363PubMedGoogle Scholar
  16. Boisvert WA, Curtiss LK, Terkeltaub RA (2000) Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol Res 21:129–137PubMedGoogle Scholar
  17. Boisvert WA, Rose DM, Johnson KA et al (2006) Up-regulated expression of the CXCR2 ligand KC/GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol 168:1385–1395PubMedGoogle Scholar
  18. Boring L, Gosling J, Chensue SW et al (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C–C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561PubMedGoogle Scholar
  19. Boring L, Gosling J, Cleary M et al (1998) Decreased lesion formation in CCR2/ mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897PubMedGoogle Scholar
  20. Braunersreuther V, Zernecke A, Steffens S et al (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27:373–379PubMedGoogle Scholar
  21. Braunersreuther V, Steffens S, Arnaud C et al (2008) A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 28:1090–1096PubMedGoogle Scholar
  22. Breland UM, Halvorsen B, Hol J et al (2008) A potential role of the CXC chemokine GROalpha in atherosclerosis and plaque destabilization: downregulatory effects of statins. Arterioscler Thromb Vasc Biol 28:1005–1011PubMedGoogle Scholar
  23. Bursill CA, Choudhury RP, Ali Z et al (2004) Broad-spectrum CC-chemokine blockade by gene transfer inhibits macrophage recruitment and atherosclerotic plaque formation in apolipoprotein E-knockout mice. Circulation 110:2460–2466PubMedGoogle Scholar
  24. Butcher M, Galkina E (2011) Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thromb Haemost 106:787–795PubMedGoogle Scholar
  25. Calabresi PA, Yun SH, Allie R et al (2002) Chemokine receptor expression on MBP reactive T cells: CXCR6 is a marker of IFNgamma-producing effector cells. J Neuroimmunol 127:96–105PubMedGoogle Scholar
  26. Calvayrac O, Rodríguez-Calvo R, Alonso J et al (2011) CCL20 is increased in hypercholesterolemic subjects and is upregulated by LDL in vascular smooth muscle cells: role of NF-κB. Arterioscler Thromb Vasc Biol 31:2733–2741PubMedGoogle Scholar
  27. Combadiere C, Potteaux S, Gao JL et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009–1016PubMedGoogle Scholar
  28. Combadiere C, Potteaux S, Rodero M et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657PubMedGoogle Scholar
  29. Dai E, Liu LY, Wang H et al (2010) Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection. PLoS One 5:e10510PubMedGoogle Scholar
  30. Damas JK, Waehre T, Yndestad A et al (2002) SDF-1α in unstable angina: potential antiinflammatory and matrix-stabilizing effects. Circulation 106:36–42PubMedGoogle Scholar
  31. Damas JK, Boullier A, Waehre T et al (2005) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler Thromb Vasc Biol 25:2567–2572PubMedGoogle Scholar
  32. Damas JK, Smith C, Oie E et al (2007) Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. Arterioscler Thromb Vasc Biol 27:614–620PubMedGoogle Scholar
  33. Daoudi M, Lavergne E, Garin A et al (2004) Enhanced adhesive capacities of the naturally occurring Ile249-Met280 variant of the chemokine receptor CX3CR1. J Biol Chem 279:19649–19657PubMedGoogle Scholar
  34. Dawson TC, Kuziel WA, Osahar TA et al (1999) Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143:205–211PubMedGoogle Scholar
  35. de Waard V, Bot I, de Jager SC et al (2010) Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently. Atherosclerosis 211:84–89PubMedGoogle Scholar
  36. Deruaz M, Frauenschuh A, Alessandri AL et al (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205:2019–2031PubMedGoogle Scholar
  37. Doran AC, Lipinski MJ, Oldham SN et al (2012) B-cell aortic homing and atheroprotection depend on Id3. Circ Res 110:e1–e12PubMedGoogle Scholar
  38. Dorgham K, Ghadiri A, Hermand P et al (2009) An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J Leukoc Biol 86:903–911PubMedGoogle Scholar
  39. Drechsler M, Megens RT, van Zandvoort M et al (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122:1837–1845PubMedGoogle Scholar
  40. Drechsler M, Döring Y, Megens RT et al (2011) Neutrophilic granulocytes—promiscuous accelerators of atherosclerosis. Thromb Haemost 106:839–848PubMedGoogle Scholar
  41. Feig JE, Pineda-Torra I, Sanson M et al (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120:4415–4424PubMedGoogle Scholar
  42. Feig JE, Shang Y, Rotllan N et al (2011a) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS One 6:e28534PubMedGoogle Scholar
  43. Feig JE, Rong JX, Shamir R et al (2011b) HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci USA 108:7166–7171PubMedGoogle Scholar
  44. Fernandes JL, Mamoni RL, Orford JL et al (2004) Increased Th1 activity in patients with coronary artery disease. Cytokine 26:131–137PubMedGoogle Scholar
  45. Fukumoto N, Shimaoka T, Fujimura H et al (2004) Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J Immunol 173:1620–1627PubMedGoogle Scholar
  46. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197PubMedGoogle Scholar
  47. Galkina E, Harry BL, Ludwig A et al (2007) CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation 116:1801–1811PubMedGoogle Scholar
  48. Gao P, Zhou XY, Yashiro-Ohtani Y et al (2003) The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. J Leukoc Biol 73:273–280PubMedGoogle Scholar
  49. Ghilardi G, Biondi ML, Turri O et al (2004) Internal carotid artery occlusive disease and polymorphisms of fractalkine receptor CX3CR1: a genetic risk factor. Stroke 35:1276–1279PubMedGoogle Scholar
  50. Gilbert J, Lekstrom-Himes J, Donaldson D et al (2011) Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am J Cardiol 107:906–911PubMedGoogle Scholar
  51. Gonzalez P, Alvarez R, Batalla A et al (2001) Genetic variation at the chemokine receptors CCR5/CCR2 in myocardial infarction. Genes Immun 2:191–195PubMedGoogle Scholar
  52. Gosling J, Slaymaker S, Gu L et al (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103:773–778PubMedGoogle Scholar
  53. Greaves DR, Hakkinen T, Lucas AD et al (2004) Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:923–929Google Scholar
  54. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281PubMedGoogle Scholar
  55. Gugl A, Renner W, Seinost G et al (2003) Two polymorphisms in the fractalkine receptor CX3CR1 are not associated with peripheral arterial disease. Atherosclerosis 166:339–343PubMedGoogle Scholar
  56. Guo J, Van Eck M, Twisk J et al (2003) Transplantation of monocyte CC-chemokine receptor 2-deficient bone marrow into ApoE3-Leiden mice inhibits atherogenesis. Arterioscler Thromb Vasc Biol 23:447–453PubMedGoogle Scholar
  57. Guo J, de Waard V, Van Eck M et al (2005) Repopulation of apolipoprotein E knockout mice with CCR2-deficient bone marrow progenitor cells does not inhibit ongoing atherosclerotic lesion development. Arterioscler Thromb Vasc Biol 25:1014–1019PubMedGoogle Scholar
  58. Han KH, Ryu J, Hong KH et al (2005) HMG-CoA reductase inhibition reduces monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated monocyte recruitment in vivo. Circulation 111:1439–1447PubMedGoogle Scholar
  59. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695PubMedGoogle Scholar
  60. Haringman JJ, Gerlag DM, Smeets TJ et al (2006) A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 54:2387–2392PubMedGoogle Scholar
  61. Heller EA, Liu E, Tager AM et al (2006) Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113:2301–2312PubMedGoogle Scholar
  62. Hofnagel O, Engel T, Severs NJ et al (2011) SR-PSOX at sites predisposed to atherosclerotic lesion formation mediates monocyte–endothelial cell adhesion. Atherosclerosis 217:371–378PubMedGoogle Scholar
  63. Horuk R (2009) Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 8:23–33PubMedGoogle Scholar
  64. Huang M, Han Y, Zhang X et al (2010) An intron polymorphism in the CXCL16 gene is associated with increased risk of coronary artery disease in Chinese Han population: a large angiography-based study. Atherosclerosis 210:160–165PubMedGoogle Scholar
  65. Huo Y, Weber C, Forlow SB et al (2001) The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest 108:1307–1314PubMedGoogle Scholar
  66. Imai T, Baba M, Nishimura M et al (1997a) The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem 272:15036–15042PubMedGoogle Scholar
  67. Imai T, Hieshima K, Haskell C et al (1997b) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530PubMedGoogle Scholar
  68. Inoue S, Egashira K, Ni W et al (2002) Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106:2700–2706PubMedGoogle Scholar
  69. Jougasaki M, Ichiki T, Takenoshita Y et al (2010) Statins suppress interleukin-6-induced monocyte chemo-attractant protein-1 by inhibiting Janus kinase/signal transducers and activators of transcription pathways in human vascular endothelial cells. Br J Pharmacol 159:1294–1303PubMedGoogle Scholar
  70. Kawamura A, Miura S, Fujino M et al (2003) CXCR3 chemokine receptor–plasma IP10 interaction in patients with coronary artery disease. Circ J 67:851–854PubMedGoogle Scholar
  71. Keating GM (2011) Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs 71:1623–1647PubMedGoogle Scholar
  72. King VL, Lin AY, Kristo F et al (2009) Interferon-gamma and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation 119:426–435PubMedGoogle Scholar
  73. Koenen RR, Weber C (2011) Chemokines: established and novel targets in atherosclerosis. EMBO Mol Med 3:713–725PubMedGoogle Scholar
  74. Koenen RR, von Hundelshausen P, Nesmelova IV et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15:97–103PubMedGoogle Scholar
  75. Krohn R, Raffetseder U, Bot I et al (2007) Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation 116:1812–1820PubMedGoogle Scholar
  76. Kuziel WA, Dawson TC, Quinones M et al (2003) CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 167:25–32PubMedGoogle Scholar
  77. Kyaw T, Tipping P, Toh BH et al (2011) Current understanding of the role of B cell subsets and intimal and adventitial B cells in atherosclerosis. Curr Opin Lipidol 22:373–379PubMedGoogle Scholar
  78. Lalani AS, Graham K, Mossman K et al (1997) The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 71:4356–4363PubMedGoogle Scholar
  79. Landsman L, Bar-On L, Zernecke A et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972PubMedGoogle Scholar
  80. Latinovic O, Reitz M, Le NM et al (2011) CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells. Virology 411:32–40PubMedGoogle Scholar
  81. Lehrke M, Millington SC, Lefterova M et al (2007) CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol 49:442–449PubMedGoogle Scholar
  82. Lei ZB, Zhang Z, Jing Q et al (2002) OxLDL upregulates CXCR2 expression in monocytes via scavenger receptors and activation of p38 mitogen-activated protein kinase. Cardiovasc Res 53:524–532PubMedGoogle Scholar
  83. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111:333–340PubMedGoogle Scholar
  84. Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689PubMedGoogle Scholar
  85. Liehn EA, Piccinini AM, Koenen RR et al (2010) A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J Am Coll Cardiol 56:1847–1857PubMedGoogle Scholar
  86. Lieu HD, Withycombe SK, Walker Q et al (2003) Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107:1315–1321PubMedGoogle Scholar
  87. Liu L, Lalani A, Dai E et al (2000) The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J Clin Invest 105:1613–1621PubMedGoogle Scholar
  88. Liu L, Dai E, Miller L et al (2004) Viral chemokine-binding proteins inhibit inflammatory responses and aortic allograft transplant vasculopathy in rat models. Transplantation 77:1652–1660PubMedGoogle Scholar
  89. Liu P, Yu YR, Spencer JA et al (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28:243–250PubMedGoogle Scholar
  90. Lucas AD, Bursill C, Guzik TJ et al (2003) Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 108:2498–2504PubMedGoogle Scholar
  91. Luchtefeld M, Grothusen C, Gagalick A et al (2010) Chemokine receptor 7 knockout attenuates atherosclerotic plaque development. Circulation 122:1621–1628PubMedGoogle Scholar
  92. Lundberg GA, Kellin A, Samnegard A et al (2005) Severity of coronary artery stenosis is associated with a polymorphism in the CXCL16/SR-PSOX gene. J Intern Med 257:415–422PubMedGoogle Scholar
  93. Lutgens E, Faber B, Schapira K et al (2005) Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monocyte chemoattractant protein monoclonal antibody. Circulation 111:3443–3452PubMedGoogle Scholar
  94. Mach F, Sauty A, Iarossi AS et al (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104:1041–1050PubMedGoogle Scholar
  95. Maningat P, Breslow JL (2011) Needed: pragmatic clinical trials for statin-intolerant patients. N Engl J Med 365:2250–2251PubMedGoogle Scholar
  96. McDermott DH, Halcox JPJ, Schenke WH et al (2001) Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 89:401–407PubMedGoogle Scholar
  97. McDermott DH, Fong AM, Yang Q et al (2003) Chemokine receptor mutant CX3CR1–M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest 111:1241–1250PubMedGoogle Scholar
  98. McDermott DH, Yang Q, Kathiresan S et al (2005) CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 112:1113–1120PubMedGoogle Scholar
  99. Minami M, Kume N, Shimaoka T et al (2001a) Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:1796–1800PubMedGoogle Scholar
  100. Minami M, Kume N, Shimaoka T et al (2001b) Expression of scavenger receptor for phosphatidylserine and oxidized lipoprotein (SR-PSOX) in human atheroma. Ann N Y Acad Sci 947:373–376PubMedGoogle Scholar
  101. Moatti D, Faure S, Fumeron F et al (2001) Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925–1928PubMedGoogle Scholar
  102. Montecucco F, Lenglet S, Braunersreuther V et al (2010) Single administration of the CXC chemokine-binding protein Evasin-3 during ischemia prevents myocardial reperfusion injury in mice. Arterioscler Thromb Vasc Biol 30:1371–1377PubMedGoogle Scholar
  103. Morikawa S, Takabe W, Mataki C et al (2002) The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. J Atheroscler Thromb 9:178–183PubMedGoogle Scholar
  104. Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229PubMedGoogle Scholar
  105. Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176PubMedGoogle Scholar
  106. Nabah YNA, Losada M, Estelles R et al (2007) CXCR2 blockade impairs angiotensin II induced CC chemokine synthesis and mononuclear leukocyte infiltration. Arterioscler Thromb Vasc Biol 27:2370–2376PubMedGoogle Scholar
  107. Nelken NA, Coughlin SR, Gordon D et al (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127PubMedGoogle Scholar
  108. Neumann FJ, Ott I, Gawaz M et al (1995) Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 92:748–755PubMedGoogle Scholar
  109. Ni W, Egashira K, Kitamoto S et al (2001) New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103:2096–2101PubMedGoogle Scholar
  110. Niessner A, Marculescu R, Kvakan H et al (2005) Fractalkine receptor polymorphisms V2491 and T280M as genetic risk factors for restenosis. Thromb Haemost 94:1251–1256PubMedGoogle Scholar
  111. Nissen SE, Nicholls SJ, Sipahi I et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565PubMedGoogle Scholar
  112. Norata GD, Garlaschelli K, Ongari M et al (2006) Effects of fractalkine receptor variants on common carotid artery intima-media thickness. Stroke 37:1558–1561PubMedGoogle Scholar
  113. Olzinski AR, Turner GH, Bernard RE et al (2010) Pharmacological inhibition of C–C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C–C chemokine receptor 2/apolipoprotein E−/− mouse: magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol 30:253–259PubMedGoogle Scholar
  114. Ortlepp JR, Vesper K, Mevissen V et al (2003) Chemokine receptor (CCR2) genotype is associated with myocardial infarction and heart failure in patients under 65 years of age. J Mol Med 81:363–367PubMedGoogle Scholar
  115. Packard RR, Lichtman AH, Libby P (2009) Innate and adaptive immunity in atherosclerosis. Semin Immunopathol 31:5–22PubMedGoogle Scholar
  116. Papadopoulou C, Corrigall V, Taylor PR et al (2008) The role of the chemokines MCP-1, GRO-alpha, IL-8 and their receptors in the adhesion of monocytic cells to human atherosclerotic plaques. Cytokine 43:181–186PubMedGoogle Scholar
  117. Pattison JM, Nelson PJ, Huie P et al (1996) RANTES chemokine expression in transplant-associated accelerated atherosclerosis. J Heart Lung Transplant 15:1194–1199PubMedGoogle Scholar
  118. Postea O, Vasina EM, Cauwenberghs S et al (2012) Contribution of platelet CX3CR1 to platelet–monocyte complex formation and vascular recruitment during hyperlipidemia. Arterioscler Thromb Vasc Biol 32:1186–1193PubMedGoogle Scholar
  119. Potteaux S, Combadiere C, Esposito B et al (2005) Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation in mice. Mol Med 11:16–20PubMedGoogle Scholar
  120. Potteaux S, Combadiere C, Esposito B et al (2006) Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 26:1858–1863PubMedGoogle Scholar
  121. Potteaux S, Gautier EL, Hutchison SB et al (2011) Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J Clin Invest 121:2025–2036PubMedGoogle Scholar
  122. Proudfoot AE, Power CA, Hoogewerf AJ et al (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271:2599–2603PubMedGoogle Scholar
  123. Quinones MP, Martinez HG, Jimenez F et al (2007) CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis 195:e92–e103PubMedGoogle Scholar
  124. Rayner K, Van ES, Groot PH et al (2000) Localization of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vasc Res 37:93–102PubMedGoogle Scholar
  125. Reckless J, Tatalick L, Wilbert S et al (2005) Broad-spectrum chemokine inhibition reduces vascular macrophage accumulation and collagenolysis consistent with plaque stabilization in mice. J Vasc Res 42:492–502PubMedGoogle Scholar
  126. Rezaie-Majd A, Maca T, Bucek RA et al (2002) Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 22:1194–1199PubMedGoogle Scholar
  127. Robbins CS, Chudnovskiy A, Rauch PJ et al (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125:364–374PubMedGoogle Scholar
  128. Robertson AK, Hansson GK (2006) T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol 26:2421–2432PubMedGoogle Scholar
  129. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220PubMedGoogle Scholar
  130. Romano M, Diomede L, Sironi M et al (2000) Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest 80:1095–1100PubMedGoogle Scholar
  131. Saederup N, Chan L, Lira SA et al (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642–1648PubMedGoogle Scholar
  132. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426PubMedGoogle Scholar
  133. Sheikine Y, Bang CS, Nilsson L et al (2006) Decreased plasma CXCL16/SR-PSOX concentration is associated with coronary artery disease. Atherosclerosis 188:462–466PubMedGoogle Scholar
  134. Simeoni E, Winkelmann BR, Hoffmann MM et al (2004) Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 25:1438–1446PubMedGoogle Scholar
  135. Smith C, Halvorsen B, Otterdal K et al (2008) High levels and inflammatory effects of soluble CXC ligand 16 (CXCL16) in coronary artery disease: down-regulatory effects of statins. Cardiovasc Res 79:195–203PubMedGoogle Scholar
  136. Sun Y, Chang Z, Zhang S (2008) Increased serum CXCL16 level is a marker for acute coronary syndromes. Arch Med Res 39:332–337PubMedGoogle Scholar
  137. Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedGoogle Scholar
  138. Szalai C, Duba J, Prohaszka Z et al (2001) Involvement of polymorphisms in the chemokine system in the susceptibility for coronary artery disease (CAD). Coincidence of elevated Lp(a) and MCP-1 -2518 G/G genotype in CAD patients. Atherosclerosis 158:233–239PubMedGoogle Scholar
  139. Tacke F, Alvarez D, Kaplan TJ et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194PubMedGoogle Scholar
  140. Teupser D, Pavlides S, Tan M et al (2004) Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci USA 101:17795–17800PubMedGoogle Scholar
  141. Trogan E, Feig JE, Dogan S et al (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci USA 103:3781–3786PubMedGoogle Scholar
  142. Tsou CL, Peters W, Si Y et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909PubMedGoogle Scholar
  143. Ueland T, Smedbakken LM, Hallén J et al (2012) Soluble CXCL16 and long-term outcome in acute ischemic stroke. Atherosclerosis 220:244–249PubMedGoogle Scholar
  144. van Wanrooij EJ, Happe H, Hauer AD et al (2005) HIV entry inhibitor TAK-779 attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25:2642–2647PubMedGoogle Scholar
  145. van Wanrooij EJ, de Jager SC, van Es T et al (2008) CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor deficient mice. Arterioscler Thromb Vasc Biol 28:251–257PubMedGoogle Scholar
  146. Veillard NR, Kwak B, Pelli G et al (2004) Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 94:253–261PubMedGoogle Scholar
  147. Veillard NR, Steffens S, Pelli G et al (2005) Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112:870–878PubMedGoogle Scholar
  148. Veillard NR, Braunersreuther V, Arnaud C et al (2006) Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis 188:51–58PubMedGoogle Scholar
  149. Verschuren L, de Vries-van der Weij J, Zadelaar S et al (2009) LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J Lipid Res 50:301–311PubMedGoogle Scholar
  150. Waehre T, Damås JK, Gullestad L et al (2003) Hydroxymethylglutaryl coenzyme a reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease. J Am Coll Cardiol 41:1460–1467PubMedGoogle Scholar
  151. Wan W, Murphy PM (2011) Regulation of atherogenesis by chemokine receptor CCR6. Trends Cardiovasc Med 21:140–144PubMedGoogle Scholar
  152. Wan W, Lim JK, Lionakis MS et al (2011) Genetic deletion of chemokine receptor Ccr6 decreases atherogenesis in ApoE-deficient mice. Circ Res 109:374–381PubMedGoogle Scholar
  153. Wang N, Tabas I, Winchester R et al (1996) Interleukin 8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma. J Biol Chem 271:8837–8842PubMedGoogle Scholar
  154. Wang KD, Liu ZZ, Wang RM et al (2010) Chemokine CXC Ligand 16 serum concentration but not A181V genotype is associated with atherosclerotic stroke. Clin Chim Acta 411:1447–1451PubMedGoogle Scholar
  155. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422PubMedGoogle Scholar
  156. Weber C, Weber KS, Klier C et al (2001) Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood 97:1144–1146PubMedGoogle Scholar
  157. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815PubMedGoogle Scholar
  158. Weber C, Meiler S, Döring Y et al (2011) CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest 121:2898–2910PubMedGoogle Scholar
  159. Wilcox JN, Nelken NA, Coughlin SR et al (1994) Local expression of inflammatory cytokines in human atherosclerotic plaques. J Atheroscler Thromb 1:S10–S13PubMedGoogle Scholar
  160. Wuttge DM, Zhou X, Sheikine Y et al (2004) CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24:750–755PubMedGoogle Scholar
  161. Xu Q, Wang J, He J et al (2011) Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis 219:92–99PubMedGoogle Scholar
  162. Yeh M, Leitinger N, de Martin R et al (2001) Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-alpha and oxidized phospholipids. Arterioscler Thromb Vasc Biol 21:1585–1591PubMedGoogle Scholar
  163. Yi GW, Zeng QT (2008) Circulating CXCL16 is related to the severity of coronary artery stenosis. Arch Med Res 39:531–535PubMedGoogle Scholar
  164. Yi GW, Zeng QT, Mao XB et al (2011) Overexpression of CXCL16 promotes a vulnerable plaque phenotype in apolipoprotein E-knockout mice. Cytokine 53:320–326PubMedGoogle Scholar
  165. Yilmaz A, Lipfert B, Cicha I et al (2007) Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp Mol Pathol 82:245–255PubMedGoogle Scholar
  166. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201PubMedGoogle Scholar
  167. Zernecke A, Bot I, Djalali-Talab Y et al (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102:209–217PubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2012

Authors and Affiliations

  1. 1.Laboratory of Molecular ImmunologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations