Archivum Immunologiae et Therapiae Experimentalis

, Volume 60, Issue 6, pp 431–442 | Cite as

Pathophysiological Mechanisms of Carotid Plaque Vulnerability: Impact on Ischemic Stroke

  • Jaroslav Pelisek
  • Hans-Henning Eckstein
  • Alma Zernecke


Stroke is among the major causes of mortality and disabilities in the world. About 80 % of all strokes in the anterior circulation are ischemic and up to 20 % of all ischemic strokes are caused by extracranial atherosclerotic carotid artery stenosis. The prevalence of a cervical internal carotid artery stenosis increases with age and can be found in 6.9 % of the elderly population (>65 years). Atherosclerotic changes of the carotid vessel wall can lead to plaque vulnerability and may result in arterio-arterial embolism, which frequently underlie carotid-related cerebrovascular ischemic events. Carotid atherosclerosis is characterised by inflammation, extensive degradation of extracellular matrix components, neovascularization, and as recently recognised is also affected by epigenetic changes. These factors accelerate the progression of atherosclerosis towards vulnerable plaques and increase the risk of ischemic stroke. In this review, the main pathophysiological mechanisms leading to rupture-prone carotid artery plaques and successive ischemic stroke are considered. It is important to recognise the heterogeneity of atherosclerosis and that various pathophysiological processes dissected in this review are not acting individually, but rather in a complementary manner. The identification and careful integration of all relevant factors will be required for the development of future diagnostic and therapeutic strategies.


Carotid atherosclerosis Vulnerable carotid plaque Ischemic stroke 



A disintegrin and metalloprotease domain


ADAM-related metalloproteases with a thrombospondin domain


Advanced glycation end products

Ang-1, -2

Angiopoietins-1 and -2


Carotid endarterectomy


Chronic kidney disease


Diabetes mellitus


Extracellular matrix




Fibroblast growth factor


Internal carotid artery


High density lipoproteins


Hypoxia-inducible growth factor






Low density lipoproteins


Oxidised low density lipoproteins


Electronegatively charged low density lipoproteins




Matrix metalloprotease


Platelet-derived growth factor




AGE receptor


Tumour necrosis factor-alpha


Vascular smooth muscle cells


Vascular endothelial growth factor


Vascular endothelial growth factor receptor


  1. Alderman EL, Corley SD, Fisher LD, Chaitman BR, Faxon DP, Foster ED, Killip T, Sosa JA, Bourassa MG, CASS Participating Investigators and Staff (1993) Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). J Am Coll Cardiol 22:1141–1154PubMedGoogle Scholar
  2. Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36:981–985PubMedGoogle Scholar
  3. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedGoogle Scholar
  4. Avogaro P, Bon GB, Cazzolato G (1988) Presence of a modified low density lipoprotein in humans. Arteriosclerosis 8:79–87PubMedGoogle Scholar
  5. Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90:9–17PubMedGoogle Scholar
  6. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nature 6:32–43Google Scholar
  7. Boumber Y, Issa JP (2011) Epigenetics in cancer: what’s the future? Oncology 25(220–6):228Google Scholar
  8. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282PubMedGoogle Scholar
  9. Caffarelli E, Filetici P (2011) Epigenetic regulation in cancer development. Front Biosci 17:2682–2694Google Scholar
  10. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660PubMedGoogle Scholar
  11. Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S (2010) Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med 26:691–700PubMedGoogle Scholar
  12. Chen CH, Walterscheid JP (2006) Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 99:787–789PubMedGoogle Scholar
  13. Chen CH, Jiang T, Yang JH, Jiang W, Lu J, Marathe GK, Pownall HJ, Ballantyne CM, McIntyre TM, Henry PD, Yang CY (2003) Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 107:2102–2108PubMedGoogle Scholar
  14. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 87:1179–1187PubMedGoogle Scholar
  15. Clarke M, Bennett M (2006a) Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle 5:2329–2331PubMedGoogle Scholar
  16. Clarke M, Bennett M (2006b) The emerging role of vascular smooth muscle cell apoptosis in atherosclerosis and plaque stability. Am J Nephrol 26:531–535PubMedGoogle Scholar
  17. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494PubMedGoogle Scholar
  18. Di Stefano R, Felice F, Balbarini A (2009) Angiogenesis as risk factor for plaque vulnerability. Curr Pharm 15:1095–1106Google Scholar
  19. Dollery CM, Libby P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69:625–635PubMedGoogle Scholar
  20. Dong C, Yoon W, Goldschmidt-Clermont PJ (2002) DNA methylation and atherosclerosis. J Nutr 132:2406S–2409SPubMedGoogle Scholar
  21. Duffy MJ, McKiernan E, O’Donovan N, McGowan PM (2009) The role of ADAMs in disease pathophysiology. Clin Chim Acta 403:31–36PubMedGoogle Scholar
  22. Eckstein HH (2012) Evidence-based management of carotid stenosis: recommendations from international guidelines. J Cardiovasc Surg (Torino) 53:3–13Google Scholar
  23. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463PubMedGoogle Scholar
  24. Fabjan JS, Abuja PM, Schaur RJ, Sevanian A (2001) Hypochlorite induces the formation of LDL(−), a potentially atherogenic low density lipoprotein subspecies. FEBS Lett 499:69–72PubMedGoogle Scholar
  25. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:779–789Google Scholar
  26. Ferri N, Paoletti R, Corsini A (2006) Biomarkers for atherosclerosis: pathophysiological role and pharmacological modulation. Curr Opin Lipidol 17:495–501PubMedGoogle Scholar
  27. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119PubMedGoogle Scholar
  28. Formato M, Farina M, Spirito R, Maggioni M, Guarino A, Cherchi GM, Biglioli P, Edelstein C, Scanu AM (2004) Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries. Arterioscler Thromb Vasc Biol 24:129–135PubMedGoogle Scholar
  29. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503PubMedGoogle Scholar
  30. Galis ZS, Sukhova GK, Libby P (1995) Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 9:974–980PubMedGoogle Scholar
  31. Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, Schwartz RS (2005) Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119–1127PubMedGoogle Scholar
  32. Ginsberg HN, Huang LS (2000) The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 7:325–331PubMedGoogle Scholar
  33. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D et al (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483PubMedGoogle Scholar
  34. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wickline SA, Parks WC (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 93:9748–9753PubMedGoogle Scholar
  35. Halvorsen B, Otterdal K, Dahl TB, Skjelland M, Gullestad L, Øie E, Aukrust P (2008) Atherosclerotic plaque stability—what determines the fate of a plaque? Prog Cardiovasc Dis 51:183–194PubMedGoogle Scholar
  36. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695PubMedGoogle Scholar
  37. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212PubMedGoogle Scholar
  38. Heider P, Pelisek J, Poppert H, Eckstein HH (2009) Evaluation of serum matrix metalloproteinases as biomarkers for detection of neurological symptoms in carotid artery disease. Vasc Endovascular Surg 43:551–560PubMedGoogle Scholar
  39. Heilmann C, Beyersdorf F, Lutter G (2002) Collateral growth: cells arrive at the construction site. Cardiovasc Surg 10:570–578PubMedGoogle Scholar
  40. Herceg Z, Vaissière T (2011) Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics 6:804–819PubMedGoogle Scholar
  41. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056PubMedGoogle Scholar
  42. Ingrosso D, Perna AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790:892–899PubMedGoogle Scholar
  43. Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169PubMedGoogle Scholar
  44. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Mosc) 73:751–762Google Scholar
  45. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in vitro vascular senescence. Biochim Biophys Acta 1772:72–80PubMedGoogle Scholar
  46. Kinsella MG, Bressler SL, Wight TN (2004) The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr 14:203–234PubMedGoogle Scholar
  47. Kobayashi M, Hirawa N, Yatsu K, Kobayashi Y, Yamamoto Y, Saka S, Andoh D, Toya Y, Yasuda G, Umemura S (2009) Relationship between silent brain infarction and chronic kidney disease. Nephrol Dial Transplant 24:201–207PubMedGoogle Scholar
  48. Kunz J (2007) Matrix metalloproteinases and atherogenesis in dependence of age. Gerontology 53:63–73PubMedGoogle Scholar
  49. Labat-Robert J, Bihari-Varga M, Robert L (1990) Extracellular matrix. FEBS Lett 268:386–393PubMedGoogle Scholar
  50. Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3:51–58PubMedGoogle Scholar
  51. Langheinrich AC, Kampschulte M, Buch T, Bohle RM (2007) Vasa vasorum and atherosclerosis—Quid novi? Thromb Haemost 97:873–879PubMedGoogle Scholar
  52. Lemaitre V, D’Armiento J (2006) Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 78:1–10PubMedGoogle Scholar
  53. Leskinen Y, Lehtimaki T, Loimaala A, Lautamatti V, Kallio T, Huhtala H, Salenius JP, Saha H (2003) Carotid atherosclerosis in chronic renal failure—the central role of increased plaque burden. Atherosclerosis 171:295–302PubMedGoogle Scholar
  54. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedGoogle Scholar
  55. Libby P, Ridker PM, Hansson GK (2002) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325Google Scholar
  56. Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on Atherothrombosis (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138PubMedGoogle Scholar
  57. Lim HS, Lip GY, Blann AD (2005) Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF glycaemic control endothelial damage/dysfunction and atherosclerosis. Atherosclerosis 80:113–118Google Scholar
  58. Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, Thompson MM (2000) Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31:40–47PubMedGoogle Scholar
  59. London GM, Marchais SJ, Guérin AP, Boutouyrie P, Métivier F, de Vernejoul MC (2008) Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol 19:1827–1835PubMedGoogle Scholar
  60. Lu J, Yang JH, Burns AR, Chen HH, Tang D, Walterscheid JP, Suzuki S, Yang CY, Sawamura T, Chen CH (2009) Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 104:619–627PubMedGoogle Scholar
  61. Lund G, Zaina S (2011) Atherosclerosis: an epigenetic balancing act that goes wrong. Curr Atheroscler Rep 13:208–214PubMedGoogle Scholar
  62. Manthey HD, Zernecke A (2011) Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb Haemost 106:772–778PubMedGoogle Scholar
  63. Mello AP, da Silva IT, Abdalla DS, Damasceno NR (2011) Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215:257–265PubMedGoogle Scholar
  64. Millichip MI, Dallas DJ, Wu E, Dale S, McKie N (1998) The metallo-disintegrin ADAM 10 from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun 245:594–598PubMedGoogle Scholar
  65. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628PubMedGoogle Scholar
  66. Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G, Steffens S, Raffaghello L, Pistoia V, Ottonello L, Pende A, Dallegri F, Mach F (2010) Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 41:1394–1404PubMedGoogle Scholar
  67. Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M, Pelli G, Galan K, Pilet L, Kuzmanovic K, Burger F, Pane B, Spinella G, Braunersreuther V, Gayet-Ageron A, Pende A, Viviani GL, Palombo D, Dallegri F, Roux-Lombard P, Santos RA, Stergiopulos N, Steffens S, Mach F (2012) The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 33:846–856PubMedGoogle Scholar
  68. Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS (2011) Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:1315–1330PubMedGoogle Scholar
  69. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76:S85–S90PubMedGoogle Scholar
  70. Muller JE, Tofler GH (1992) Triggering and hourly variation of onset of arterial thrombosis. Ann Epidemiol 2:393–405PubMedGoogle Scholar
  71. Murata K, Motayama T, Kotake C (1986) Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60:251–262PubMedGoogle Scholar
  72. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani-Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003a) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:21664–21672Google Scholar
  73. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003b) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778PubMedGoogle Scholar
  74. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900PubMedGoogle Scholar
  75. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31PubMedGoogle Scholar
  76. Newby AC, Southgate KM, Davies M (1994) Extracellular matrix degrading metallo-proteinases in the pathogenesis of arteriosclerosis. Basic Res Cardiol 89:59–70PubMedGoogle Scholar
  77. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92:1393–1398PubMedGoogle Scholar
  78. Ordovás JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7:510–519PubMedGoogle Scholar
  79. Pelisek J, Shimizu M, Nikol S (2004) Differential developmental origin of arteries: impact on angiogenesis and arteriogenesis. Med Chem Rev 1:317–326Google Scholar
  80. Pelisek J, Rudelius M, Zepper P, Poppert H, Reeps C, Schuster T, Eckstein HH (2009) Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc Dis 28:601–610PubMedGoogle Scholar
  81. Pelisek J, Assadian A, Sarkar O, Eckstein HH, Frank H (2010) Carotid plaque composition in chronic kidney disease: a retrospective analysis of patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg 39:11–16PubMedGoogle Scholar
  82. Pelisek J, Hahntow IN, Eckstein HH, Ockert S, Reeps C, Heider P, Luppa PB, Frank H (2011) Impact of chronic kidney disease on carotid plaque vulnerability. J Vasc Surg 54:1643–1649PubMedGoogle Scholar
  83. Pelisek J, Reeps C, Ockert S, Zimmermann A, Zepper P, Poppert H, Eckstein HH (2012) Evaluation of serum biomarkers for patients at increased risk of stroke. Int J Vasc Med [Ahead of print]Google Scholar
  84. Pelisek J, Well G, Reeps C, Rudelius M, Kuehnl A, Culmes M, Poppert H, Zimmermann A, Berger H, Eckstein HH (2012) Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ J [Epub, ahead of print]Google Scholar
  85. Perco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R (2006) Protein biomarkers associated with acute renal failure and chronic kidney disease. Eur J Clin Invest 36:753–763PubMedGoogle Scholar
  86. Plutzky J (2003) The vascular biology of atherosclerosis. Am J Med 115:55S–61SPubMedGoogle Scholar
  87. Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27PubMedGoogle Scholar
  88. Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176:1–40PubMedGoogle Scholar
  89. Radford EJ, Ferrón SR, Ferguson-Smith AC (2011) Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 585:2059–2066PubMedGoogle Scholar
  90. Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, Zelinger A, Mahmarian JJ (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855PubMedGoogle Scholar
  91. Redgrave JN, Gallagher PJ, Lovett JK, Rothwell PM (2008) Critical cap thickness and rupture in symptomatic carotid plaques: the Oxford Plaque Study. Stroke 39:1722–1729PubMedGoogle Scholar
  92. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, Eckstein HH (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76:243–252PubMedGoogle Scholar
  93. Rey FE, Pagano PJ (2002) The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 22:1962–1971PubMedGoogle Scholar
  94. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126PubMedGoogle Scholar
  95. Rossi A, Bonfante L, Giacomini A, Calabro A, Rossi G, Saller A, Abbruzzese E, Baldo G, Mastrosimone S, Beccari A, Baiocchi MR, de Silvestro L, Roncali D, Bolzonella R, Giardin C, Antonello A, Normanno M, Crepaldi G, Borsatti A (1996) Carotid artery lesions in patients with nondiabetic chronic renal failure. Am J Kidney Dis 27:58–66PubMedGoogle Scholar
  96. Rothwell PM (2000) Carotid artery disease and the risk of ischaemic stroke and coronary vascular events. Cerebrovasc Dis 10:21–33PubMedGoogle Scholar
  97. Roy R, Zhang B, Moses MA (2006) Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 312:608–622PubMedGoogle Scholar
  98. Russo D, Morrone LF, Brancaccio S, Napolitano P, Salvatore E, Spadola R, Imbriaco M, Russo CV, Andreucci VE (2009) Pulse pressure and presence of coronary artery calcification. Clin J Am Soc Nephrol 4:316–322PubMedGoogle Scholar
  99. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Dictinct roles for ADAM 10 and ADAM 17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779PubMedGoogle Scholar
  100. Savage T, Clarke AL, Giles M, Tomson CR, Raine AE (1998) Calcified plaque is common in the carotid and femoral arteries of dialysis patients without clinical vascular disease. Nephrol Dial Transplant 13:2004–2012PubMedGoogle Scholar
  101. Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterios Thromb Vasc Biol 23:1143–1151Google Scholar
  102. Schmermund A, Erbel R (2001) Unstable coronary plaque and its relation to coronary calcium. Circulation 104:1682–1687PubMedGoogle Scholar
  103. Schmidt AM, Stern D (2000) Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2:430–436PubMedGoogle Scholar
  104. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteaes: multidomain proteins with multiple functions. Genes Dev 17:7–30PubMedGoogle Scholar
  105. Serman A, Vlahović M, Serman L, Bulić-Jakus F (2006) DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol 30:665–671PubMedGoogle Scholar
  106. Shen CM, Mao SJ, Huang GS, Yang PC, Chu RM (2001) Stimulation of smooth muscle cell proliferation by ox-LDL- and acetyl LDL-induced macrophage-derived foam cells. Life Sci 70:443–452PubMedGoogle Scholar
  107. Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41:278–286PubMedGoogle Scholar
  108. Shimizu M, Pelisek J, Nikol S (2002) Vasculogenesis and angiogenesis depend on the developmental origin in the arterial tree. Curr Med Chem 9:1619–1630PubMedGoogle Scholar
  109. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29PubMedGoogle Scholar
  110. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85:391–405PubMedGoogle Scholar
  111. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478PubMedGoogle Scholar
  112. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374PubMedGoogle Scholar
  113. Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimbürger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekström TJ, Schalling M (2007) Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? J Intern Med 261:488–499PubMedGoogle Scholar
  114. Sundström J, Vasan RS (2006) Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol 17:45–53PubMedGoogle Scholar
  115. Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 33:33–44PubMedGoogle Scholar
  116. Taylor AJ, Burke AP, O’Malley PG, Farb A, Malcom GT, Smialek J, Virmani R (2000) A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation 101:1243–1248PubMedGoogle Scholar
  117. Thakore AH, Guo CY, Larson MG, Corey D, Wang TJ, Vasan RS, D’Agostino RB Sr, Lipinska I, Keaney JF Jr, Benjamin EJ, O’Donnell CJ (2007) Association of multiple inflammatory markers with carotid intimal medial thickness and stenosis (from the Framingham Heart Study). Am J Cardiol 99:1598–1602PubMedGoogle Scholar
  118. Tomasik A, Jacheć W, Skrzep-Poloczek B, Widera-Romuk E, Wodniecki J, Wojciechowska C (2003) Circulating electronegatively charged low-density lipoprotein in patients with angiographically documented coronary artery disease. Scand J Clin Lab Invest 63:259–265PubMedGoogle Scholar
  119. Tomkin GH, Owens D (2001) Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev 17:27–43PubMedGoogle Scholar
  120. Turunen MP, Aavik E, Ylä-Herttuala S (2009) Epigenetics and atherosclerosis. Biochim Biophys Acta 1790:886–891PubMedGoogle Scholar
  121. van Goor H, Melenhorst WB, Turner AJ, Holgate ST (2009) Adamalysins in biology and disease. J Pathol 219:277–286PubMedGoogle Scholar
  122. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2012:62–1275Google Scholar
  123. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscl Thromb Vasc Biol 25:205420–205461Google Scholar
  124. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18PubMedGoogle Scholar
  125. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815PubMedGoogle Scholar
  126. Wight TN (2005) The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler Thromb Vasc Biol 25:12–14PubMedGoogle Scholar
  127. Williams H, Johnson JL, Jackson CL, White SJ, George SJ (2010) MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 87:137–146PubMedGoogle Scholar
  128. Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100(2):93–100PubMedGoogle Scholar
  129. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201PubMedGoogle Scholar
  130. Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28:1897–1908PubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2012

Authors and Affiliations

  • Jaroslav Pelisek
    • 1
  • Hans-Henning Eckstein
    • 1
  • Alma Zernecke
    • 1
    • 2
  1. 1.Clinic for Vascular and Endovascular SurgeryKlinikum rechts der Isar der Technischen Universitaet MuenchenMunichGermany
  2. 2.Rudolf Virchow-Center/DFG-Research Center for Experimental MedicineUniversity of WürzburgWürzburgGermany

Personalised recommendations