Advertisement

Talin, Vinculin and Nestin Expression in Orofacial Muscles of Dystrophin Deficient mdx Mice

  • Alexander Spassov
  • Tomasz Gredes
  • Dragan Pavlovic
  • Tomasz Gedrange
  • Christian Lehmann
  • Silke Lucke
  • Christiane Kunert-Keil
Original Article

Abstract

The activity of cytoskeletal proteins like talin, vinculin and nestin increases in muscle that regenerates. Little is known about their role or at least their expression in the process of regeneration in masticatory muscles of mdx mice, a model of Duchenne muscular dystrophy. To determine a potential role of cytoskeletal proteins in the regeneration process of mdx masticatory muscles, we examined the expression of talin 1, talin 2, vinculin and nestin in 100-day-old control and mdx mice using quantitative RT-PCR, Western blot analyses and histochemistry. The protein expression of talin 1, talin 2, nestin and vinculin in mdx muscles remained unchanged as compared with normal mice. However, in mdx masseter it was found a relative increase of nestin compared to controls. The protein expression of talin 1 and vinculin tended to be increased in mdx tongue and talin 2 to diminish in mdx masseter and temporal muscle. In mdx mice, we found significantly lower percentage of transcripts coding for nestin, talin 1, talin 2 and vinculin in masseter (p < 0.05) and temporal muscle (p < 0.001). In contrast, the mRNA expression of nestin was found to be increased in mdx tongue. Activated satellite cells, myoblasts and immature regenerated muscle fibres in mdx masseter and temporal revealed positive staining for nestin. The findings of the presented work suggest dystrophin-lack-associated changes in the expression of cytoskeletal proteins in mdx masticatory muscles could be compensatory for dystrophin absence. The expression of nestin may serve as an indicator for the regeneration in the orofacial muscles.

Keywords

mdx Nestin Regeneration Dystrophy Masticatory mucles 

Notes

Acknowledgments

The authors wish to thank I. Pieper for excellent technical assistance.

References

  1. Botteron S, Verdebout CM, Jeannet PY et al (2009) Orofacial dysfunction in Duchenne muscular dystrophy. Arch Oral Biol 54:26–31PubMedCrossRefGoogle Scholar
  2. Burridge K, Mangeat P (1984) An interaction between vinculin and talin. Nature 308:744–746PubMedCrossRefGoogle Scholar
  3. Cizkova D, Soukup T, Mokry J (2009a) Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles. Histochem Cell Biol 131:197–206PubMedCrossRefGoogle Scholar
  4. Cizkova D, Soukup T, Mokry J (2009b) Nestin expression reflects formation, revascularization and reinnervation of new myofibers in regenerating rat hind limb skeletal muscles. Cells Tissues Organs 189:338–347PubMedCrossRefGoogle Scholar
  5. Gassmann M, Grenacher B, Rohde B et al (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855PubMedCrossRefGoogle Scholar
  6. Ghafari J, Clark RE, Shofer FS et al (1988) Dental and occlusal characteristics of children with neuromuscular disease. Am J Orthod Dentofacial Orthop 93:126–132PubMedCrossRefGoogle Scholar
  7. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928PubMedCrossRefGoogle Scholar
  8. Hopf FW, Turner PR, Steinhardt RA (2007) Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 45:429–464PubMedCrossRefGoogle Scholar
  9. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554PubMedCrossRefGoogle Scholar
  10. Kachinsky AM, Dominov JA, Miller JB (1994) Myogenesis and the intermediate filament protein, nestin. Dev Biol 165:216–228PubMedCrossRefGoogle Scholar
  11. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031PubMedCrossRefGoogle Scholar
  12. Law DJ, Allen DL, Tidball JG (1994) Talin, vinculin and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis. J Cell Sci 107(Pt 6):1477–1483PubMedGoogle Scholar
  13. Matsuyuki T, Kitahara T, Nakashima A (2006) Developmental changes in craniofacial morphology in subjects with Duchenne muscular dystrophy. Eur J Orthod 28:42–50PubMedCrossRefGoogle Scholar
  14. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671PubMedGoogle Scholar
  15. Pastoret C, Sebille A (1995) Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Muscle Nerve 18:1147–1154PubMedCrossRefGoogle Scholar
  16. Sjöberg G, Jiang WQ, Ringertz NR et al (1994) Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res 214:447–458PubMedCrossRefGoogle Scholar
  17. Spassov A, Gredes T, Gedrange T et al (2010) Histological changes in masticatory muscles of mdx mice. Arch Oral Biol 55:318–324PubMedCrossRefGoogle Scholar
  18. Spassov A, Gredes T, Gedrange T et al (2011a) Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice. Eur J Orthod 33:613–619PubMedCrossRefGoogle Scholar
  19. Spassov A, Gredes T, Gedrange T et al (2011b) The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (mdx) mice. Cell Mol Biol Lett 16:214–225PubMedCrossRefGoogle Scholar
  20. Tanabe Y, Esaki K, Nomura T (1986) Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta Neuropathol 69:91–95PubMedCrossRefGoogle Scholar
  21. Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33:657–662PubMedCrossRefGoogle Scholar
  22. Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460PubMedCrossRefGoogle Scholar
  23. Ziegler WH, Gingras AR, Critchley DR et al (2008) Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans 36(Pt 2):235–239PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2012

Authors and Affiliations

  • Alexander Spassov
    • 1
  • Tomasz Gredes
    • 1
  • Dragan Pavlovic
    • 2
  • Tomasz Gedrange
    • 1
  • Christian Lehmann
    • 3
  • Silke Lucke
    • 1
  • Christiane Kunert-Keil
    • 1
  1. 1.Department of Orthodontics, Faculty of MedicineUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of Anaesthetics and Intensive Care Medicine, Faculty of MedicineUniversity of GreifswaldGreifswaldGermany
  3. 3.Department of AnesthesiaDalhousie UniversityHalifaxCanada

Personalised recommendations