Advertisement

Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades?

  • Fulvio Baggi
  • Carlo Antozzi
  • Chiara Toscani
  • Chiara Cordiglieri
Review

Abstract

Myasthenia gravis (MG) is an autoimmune disease caused by an immunological response against the acetylcholine receptor (AChR) at the neuromuscular junction. Anti-AChR antibodies induce degradation of the receptor, activation of complement cascade and destruction of the post-synaptic membrane, resulting in a functional reduction of AChR availability. The pathophysiological role of autoantibodies (auto-Abs) and T helper lymphocytes has been studied in the experimental autoimmune MG (EAMG) models. EAMG models have been employed to investigate the factors involved in the development of MG and to suggest new therapies aimed to preventing or modulating the ongoing disease. EAMG can be induced in susceptible mouse and rat strains, which develop clinical symptoms such as muscular weakness and fatigability, mimicking the human disease. Two major types of EAMG can be induced, passive and active EAMG. Passive transfer MG models, involving the injection of auto-Abs, are helpful for studying the role of complement molecules and their regulatory proteins, which can prevent neuromuscular junction degradation. Active models, induced by immunization, are employed for the analysis of antigen-specific immune responses and their modulation in order to improve disease progression. In this review, we will concentrate on the main pathogenic mechanisms of MG, focusing on recent findings on EAMG experimental models.

Keywords

Myasthenia gravis Autoimmunity Neuroimmunology Experimental model 

Abbreviations

aa

Amino acids

AChR

Acetylcholine receptor

TAChR

Torpedo californica AChR

auto-Abs

Autoantibodies

BMSC

Bone marrow stromal cells

DC

Dendritic cells

MG

Myasthenia gravis

MIR

Main immunogenic region

EAMG

Experimental autoimmune MG

CFA

Complete Freund’s adjuvant

GM-CSF

Granulocyte–macrophage colony-stimulating factor

IgG

Immunoglobulin G type

MAC

Membrane attack complex

NMJ

Neuromuscular junction

PBL

Peripheral blood lymphocytes

PIX

Pixantrone (BBR2778)

SCID

Severe combined immunodeficiency

TGF-β1

Transforming growth factor 1-beta

Treg

Regulatory T-cell

Notes

Acknowledgments

We regret that the essential work of many investigators and colleagues could not be included in this review due to space constraints.

References

  1. Abramsky O, Tarrab-Hazdai R, Aharonov A et al (1976) Immunosuppression of experimental autoimmune myasthenia gravis by hydrocortisone and azathioprine. J Immunol 117:225–228PubMedGoogle Scholar
  2. Antozzi C, Gemma M, Regi B et al (1991) A short plasma exchange protocol is effective in severe myasthenia gravis. J Neurol 238:103–107PubMedCrossRefGoogle Scholar
  3. Arce S, Cassese G, Hauser A et al (2002) The role of long-lived plasma cells in autoimmunity. Immunobiology 206:558–562PubMedCrossRefGoogle Scholar
  4. Aricha R, Feferman T, Fuchs S et al (2008) Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol 180:2132–2139PubMedGoogle Scholar
  5. Aricha R, Feferman T, Scott HS et al (2011) The susceptibility of Aire(−/−) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun 36:16–24PubMedCrossRefGoogle Scholar
  6. Baggi F, Andreetta F, Caspani E et al (1999) Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. J Clin Invest 104:1287–1295PubMedCrossRefGoogle Scholar
  7. Baggi F, Annoni A, Ubiali F et al (2004) Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats. J Immunol 172:2697–2703PubMedGoogle Scholar
  8. Balandina A, Lecart S, Dartevelle P et al (2005) Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105:735–741PubMedCrossRefGoogle Scholar
  9. Balasa B, Deng C, Lee J et al (1997) Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 186:385–391PubMedCrossRefGoogle Scholar
  10. Balasa B, Deng C, Lee J et al (1998) The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. J Immunol 161:2856–2862PubMedGoogle Scholar
  11. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  12. Barchan D, Souroujon MC, Im SH et al (1999) Antigen-specific modulation of experimental myasthenia gravis: nasal tolerization with recombinant fragments of the human acetylcholine receptor alpha-subunit. Proc Natl Acad Sci USA 96:8086–8091PubMedCrossRefGoogle Scholar
  13. Bellone M, Ostlie N, Lei SJ et al (1991) The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol 147:1484–1491PubMedGoogle Scholar
  14. Berman PW, Patrick J (1980a) Experimental myasthenia gravis. A murine system. J Exp Med 151:204–223PubMedCrossRefGoogle Scholar
  15. Berman PW, Patrick J (1980b) Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med 152:507–520PubMedCrossRefGoogle Scholar
  16. Biesecker G, Gomez CM (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 142:2654–2659PubMedGoogle Scholar
  17. Biesecker G, Koffler D (1988) Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats. Association with decreased amounts of in situ acetylcholine receptor-antibody complexes. J Immunol 140:3406–3410PubMedGoogle Scholar
  18. Chamberlain-Banoub J, Neal JW, Mizuno M et al (2006) Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin Exp Immunol 146:278–286PubMedCrossRefGoogle Scholar
  19. Christadoss P (1988) C5 gene influences the development of murine myasthenia gravis. J Immunol 140:2589–2592PubMedGoogle Scholar
  20. Christadoss P, Poussin M, Deng C (2000) Animal models of myasthenia gravis. Clin Immunol 94:75–87PubMedCrossRefGoogle Scholar
  21. Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116:2843–2854PubMedCrossRefGoogle Scholar
  22. Dau PC (1981) Response to plasmapheresis and immunosuppressive drug therapy in sixty myasthenia gravis patients. Ann NY Acad Sci 377:700–708PubMedCrossRefGoogle Scholar
  23. Deng C, Goluszko E, Tuzun E et al (2002) Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol 169:1077–1083PubMedGoogle Scholar
  24. Drachman DB (2003) Autonomic “myasthenia”: the case for an autoimmune pathogenesis. J Clin Invest 111:797–799PubMedGoogle Scholar
  25. Drachman DB, Angus CW, Adams RN et al (1978) Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 298:1116–1122PubMedCrossRefGoogle Scholar
  26. Duan RS, Adikari SB, Huang YM et al (2004) Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Neurobiol Dis 16:461–467PubMedCrossRefGoogle Scholar
  27. Eldefrawi ME (1978) Experimental autoimmune myasthenia gravis: the rabbit as an animal model. Fed Proc 37:2823–2827PubMedGoogle Scholar
  28. Engel AG, Fumagalli G (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found Symp (90):197–224Google Scholar
  29. Engel AG, Lambert EH, Howard FM (1977) Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc 52:267–280PubMedGoogle Scholar
  30. Fattorossi A, Battaglia A, Buzzonetti A et al (2005) Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology 116:134–141PubMedCrossRefGoogle Scholar
  31. Goluszko E, Deng C, Poussin MA et al (2002) Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis. J Neuroimmunol 122:85–93PubMedCrossRefGoogle Scholar
  32. Gomez CM, Richman DP (1983) Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 80:4089–4093PubMedCrossRefGoogle Scholar
  33. Gomez AM, Van Den Broeck J, Vrolix K et al (2010) Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 43:353–370PubMedCrossRefGoogle Scholar
  34. Gomez AM, Vrolix K, Martinez–Martinez P et al (2011) Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186:2503–2513PubMedCrossRefGoogle Scholar
  35. Hill M, Moss P, Wordsworth P et al (1999) T cell responses to D-penicillamine in drug-induced myasthenia gravis: recognition of modified DR1:peptide complexes. J Neuroimmunol 97:146–153PubMedCrossRefGoogle Scholar
  36. Hoch W, McConville J, Helms S et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368PubMedCrossRefGoogle Scholar
  37. Hoedemaekers AC, Verschuuren JJ, Spaans F et al (1997a) Age-related susceptibility to experimental autoimmune myasthenia gravis: immunological and electrophysiological aspects. Muscle Nerve 20:1091–1101PubMedCrossRefGoogle Scholar
  38. Hoedemaekers AC, van Breda Vriesman PJ, De Baets MH (1997b) Myasthenia gravis as a prototype autoimmune receptor disease. Immunol Res 16:341–354PubMedCrossRefGoogle Scholar
  39. Im SH, Barchan D, Fuchs S et al (1999) Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest 104:1723–1730PubMedCrossRefGoogle Scholar
  40. Janssen SP, Phernambucq M, Martinez–Martinez P et al (2008) Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. J Neuroimmunol 201–202:111–120Google Scholar
  41. Kaminski HJ, Kusner LL, Richmonds C et al (2006) Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Exp Neurol 202:287–293PubMedCrossRefGoogle Scholar
  42. Karachunski PI, Ostlie NS, Okita DK et al (1999) Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor. J Neuroimmunol 95:73–84PubMedCrossRefGoogle Scholar
  43. Karachunski PI, Ostlie NS, Monfardini C et al (2000) Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J Immunol 164:5236–5244PubMedGoogle Scholar
  44. Karussis DM, Lehmann D, Brenner T et al (1994) Immunomodulation of experimental autoimmune myasthenia gravis with linomide. J Neuroimmunol 55:187–193PubMedCrossRefGoogle Scholar
  45. Kong QF, Sun B, Bai SS et al (2009a) Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol 207:83–91PubMedCrossRefGoogle Scholar
  46. Kong QF, Sun B, Wang GY et al (2009b) BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 39:800–809PubMedCrossRefGoogle Scholar
  47. Lennon VA, Lindstrom JM, Seybold ME (1975) Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med 141:1365–1375PubMedCrossRefGoogle Scholar
  48. Lennon VA, Seybold ME, Lindstrom JM et al (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 147:973–983PubMedCrossRefGoogle Scholar
  49. Lennon VA, Lambert EH, Leiby KR et al (1991) Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol 146:2245–2248PubMedGoogle Scholar
  50. Lin F, Kaminski HJ, Conti-Fine BM et al (2002) Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 110:1269–1274PubMedGoogle Scholar
  51. Lindstrom J (1980) Experimental autoimmune myasthenia gravis. J Neurol Neurosurg Psychiatry 43:568–576PubMedCrossRefGoogle Scholar
  52. Lindstrom J (2008) ‘Seronegative’ myasthenia gravis is no longer seronegative. Brain 131(Pt 7):1684–1685PubMedCrossRefGoogle Scholar
  53. Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26:1054–1059PubMedGoogle Scholar
  54. Link H, Xiao BG (2001) Rat models as tool to develop new immunotherapies. Immunol Rev 184:117–128PubMedCrossRefGoogle Scholar
  55. Liu R, Hao J, Dayao CS et al (2009) T-bet deficiency decreases susceptibility to experimental myasthenia gravis. Exp Neurol 220:366–373PubMedCrossRefGoogle Scholar
  56. Liu R, Zhou Q, La Cava A et al (2010) Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol 40:1577–1589PubMedCrossRefGoogle Scholar
  57. Losen M, Stassen MH, Martinez–Martinez P et al (2005) Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain 128(Pt 10):2327–2337PubMedCrossRefGoogle Scholar
  58. Luo J, Taylor P, Losen M et al (2009) Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 29:13898–13908PubMedCrossRefGoogle Scholar
  59. Mantegazza R, Bonanno S, Camera G et al (2011) Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatr Dis Treat 7:151–160PubMedCrossRefGoogle Scholar
  60. Mareska M, Gutmann L (2004) Lambert-Eaton myasthenic syndrome. Semin Neurol 24:149–153PubMedCrossRefGoogle Scholar
  61. Martinez–Martinez P, Losen M, Duimel H et al (2007) Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Am J Pathol 170:644–657PubMedCrossRefGoogle Scholar
  62. Martino G, DuPont BL, Wollmann RL et al (1993) The human-severe combined immunodeficiency myasthenic mouse model: a new approach for the study of myasthenia gravis. Ann Neurol 34:48–56PubMedCrossRefGoogle Scholar
  63. Matsui N, Nakane S, Saito F et al (2010) Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology 74:816–820PubMedCrossRefGoogle Scholar
  64. Meinl E, Klinkert WE, Wekerle H (1991) The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol 139:995–1008PubMedGoogle Scholar
  65. Melms A, Luther C, Stoeckle C et al (2006) Thymus and myasthenia gravis: antigen processing in the human thymus and the consequences for the generation of autoreactive T cells. Acta Neurol Scand Suppl 183:12–13PubMedCrossRefGoogle Scholar
  66. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8:475–490PubMedCrossRefGoogle Scholar
  67. Milani M, Ostlie N, Wu H et al (2006) CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol 179:152–162PubMedCrossRefGoogle Scholar
  68. Moiola L, Galbiati F, Martino G et al (1998) IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol 28:2487–2497PubMedCrossRefGoogle Scholar
  69. Morgan BP, Chamberlain-Banoub J, Neal JW et al (2006) The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol 146:294–302PubMedCrossRefGoogle Scholar
  70. Mu L, Sun B, Kong Q et al (2009) Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology 128(1 suppl):e826–e836PubMedCrossRefGoogle Scholar
  71. Nessi V, Nava S, Ruocco C et al (2010) Naturally occurring CD4+ CD25+ regulatory T cells prevent but do not improve experimental myasthenia gravis. J Immunol 185:5656–5667PubMedCrossRefGoogle Scholar
  72. Newsom-Davis J, Willcox N, Calder L (1981) Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes. N Engl J Med 305:1313–1318PubMedCrossRefGoogle Scholar
  73. Ostlie N, Milani M, Wang W et al (2003) Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice. J Immunol 170:604–612PubMedGoogle Scholar
  74. Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180:871–872PubMedCrossRefGoogle Scholar
  75. Penn AS, Low BW, Jaffe IA et al (1998) Drug-induced autoimmune myasthenia gravis. Ann NY Acad Sci 841:433–449PubMedCrossRefGoogle Scholar
  76. Pestronk A, Drachman DB, Teoh R et al (1983) Combined short-term immunotherapy for experimental autoimmune myasthenia gravis. Ann Neurol 14:235–241PubMedCrossRefGoogle Scholar
  77. Piddlesden SJ, Jiang S, Levin JL et al (1996) Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 71:173–177PubMedCrossRefGoogle Scholar
  78. Poussin MA, Goluszko E, David CS et al (2001) HLA-DQ6 transgenic mice resistance to experimental autoimmune myasthenia gravis is linked to reduced acetylcholine receptor-specific IFN-gamma, IL-2 and IL-10 production. J Autoimmun 17:175–180PubMedCrossRefGoogle Scholar
  79. Qi H, Tuzun E, Allman W et al (2008) C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol 196:101–106PubMedCrossRefGoogle Scholar
  80. Rodgaard A, Nielsen FC, Djurup R et al (1987) Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol 67:82–88PubMedGoogle Scholar
  81. Roncarolo MG, Levings MK, Traversari C (2001) Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 193:F5–F9PubMedCrossRefGoogle Scholar
  82. Ruff RL, Lennon VA (1998) End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis. Ann Neurol 43:370–379PubMedCrossRefGoogle Scholar
  83. Russel WMS, Burch RL (1959) The principles of humane experimental technique. Special edition published by Universities Federation for Animal Welfare (UFAW), 1992 edn. Methuen & Co., LondonGoogle Scholar
  84. Sahashi K, Engel AG, Lambert EH et al (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 39:160–172PubMedCrossRefGoogle Scholar
  85. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562PubMedCrossRefGoogle Scholar
  86. Sanders DB, Evoli A (2010) Immunosuppressive therapies in myasthenia gravis. Autoimmunity 43:428–435PubMedCrossRefGoogle Scholar
  87. Schönbeck S, Padberg F, Hohlfeld R et al (1992) Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 90:245–250PubMedCrossRefGoogle Scholar
  88. Sheng JR, Li L, Ganesh BB et al (2006) Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J Immunol 177:5296–5306PubMedGoogle Scholar
  89. Slater CR, Young C, Wood SJ et al (1997) Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies. Brain 120(Pt 9):1513–1531PubMedCrossRefGoogle Scholar
  90. Soltys J, Kusner LL, Young A et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75PubMedCrossRefGoogle Scholar
  91. Tarrab-Hazdai R, Aharonov A, Silman I et al (1975) Experimental autoimmune myasthenia induced in monkeys by purified acetylcholine receptor. Nature 256:128–130PubMedCrossRefGoogle Scholar
  92. Toro-Goyco E, Cora EM, Kessler MJ et al (1986) Induction of experimental myasthenia gravis in rhesus monkeys: a model for the study of the human disease. PR Health Sci J 5:13–18Google Scholar
  93. Toyka KV, Brachman DB, Pestronk A et al (1975) Myasthenia gravis: passive transfer from man to mouse. Science 190:397–399PubMedCrossRefGoogle Scholar
  94. Tzartos S, Hochschwender S, Vasquez P et al (1987) Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 15:185–194PubMedCrossRefGoogle Scholar
  95. Tzartos SJ, Kokla A, Walgrave SL et al (1988) Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the alpha subunit. Proc Natl Acad Sci USA 85:2899–2903PubMedCrossRefGoogle Scholar
  96. Ubiali F, Nava S, Nessi V et al (2008) Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats. J Immunol 180:2696–2703PubMedGoogle Scholar
  97. van der Neut Kolfschoten M, Schuurman J, Losen M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557PubMedCrossRefGoogle Scholar
  98. Vincent A (1991) Autoimmunity to acetylcholine receptors in myasthenia gravis. Biochem Soc Trans 19:180–183PubMedGoogle Scholar
  99. Vincent A (1994) AChR from cell line TE671 cannot replace human muscle AChR in the conventional diagnostic immunoprecipitation RIA. J Neuroimmunol 53:115PubMedCrossRefGoogle Scholar
  100. Vincent A (2002) Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2:797–804PubMedCrossRefGoogle Scholar
  101. Wang ZY, Karachunski PI, Howard JF et al (1999) Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cells. Neurology 52:484–497PubMedGoogle Scholar
  102. Wang W, Ostlie NS, Conti-Fine BM et al (2004) The susceptibility to experimental myasthenia gravis of STAT6−/− and STAT4−/− BALB/c mice suggests a pathogenic role of Th1 cells. J Immunol 172:97–103PubMedGoogle Scholar
  103. Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64:393–429PubMedCrossRefGoogle Scholar
  104. Xiao BG, Duan RS, Link H et al (2003) Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell Immunol 223:63–69PubMedCrossRefGoogle Scholar
  105. Xiao BG, Duan RS, Zhu WH et al (2006) The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. Cell Immunol 241:95–101PubMedCrossRefGoogle Scholar
  106. Yang H, Goluszko E, David C et al (2002) Mapping myasthenia gravis-associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice. J Clin Invest 109:1111–1120PubMedGoogle Scholar
  107. Yang H, Zhang Y, Wu M et al (2010) Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm Res 59:197–205PubMedCrossRefGoogle Scholar
  108. Yarilin D, Duan R, Huang YM et al (2002) Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 127:214–219PubMedCrossRefGoogle Scholar
  109. Zhang GX, Xiao BG, Bai XF et al (1999) Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol 162:3775–3781PubMedGoogle Scholar
  110. Zhou Y, Gong B, Lin F et al (2007) Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 179:8562–8567PubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2011

Authors and Affiliations

  • Fulvio Baggi
    • 1
  • Carlo Antozzi
    • 1
  • Chiara Toscani
    • 1
  • Chiara Cordiglieri
    • 1
  1. 1.Preclinical Neuroimmunology Laboratory, Neurology IV UnitFondazione Istituto Neurologico “Carlo Besta”MilanItaly

Personalised recommendations