Skip to main content

Advertisement

Log in

Soluble TNF-α Receptor I Encoded on Plasmid Vector and Its Application in Experimental Gene Therapy of Radiation-Induced Lung Fibrosis

  • ORIGINAL ARTICLE
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Post-radiation inflammatory reaction leads to an irreversible pulmonary fibrosis which may cause lethal respiratory insufficiency. Pathological inflammatory and fibrotic changes might be attenuated by inhibiting tumour necrosis factor (TNF)-α activity using TNF-α soluble receptors. Thus, an experimental antifibrotic gene therapy with the plasmid vector encoding a mouse soluble receptor I for TNF-α (psTNFR-I) was assessed. Soluble TNFR-I encoding gene was cloned into pcDNA3.1 plasmid. The ability of psTNFR-I expressing vector to transfect cells, and its biological activity in vitro and in vivo were examined by PCR, RT-PCR, MTT assay and ELISA. The C57Bl/6J mice received single intramuscular injection of psTNFR-I, conjugated with polyetylenimine (PEI) 25 kDa, equally divided to both hind legs, 3 days before irradiation (20 Gy, Co60), and either a single injection or ten injections once a week after irradiation. The data proved the effectiveness of psTNFR-I product to neutralise TNF-α activity in vitro. The in vivo plasmid incorporation and maintenance was confirmed. Measurements of plasma soluble TNFR-I levels showed that the in vivo gene transfer was effective. PEI was found to enhance transfection efficiency in vivo. The psTNFR-I/PEI complexes caused no toxicity in the transfected mice. C57Bl/6J mice that received prolonged psTNFR-I/PEI injections developed lethal fibrotic syndrome and died 8 weeks later than the mice treated with a double plasmid injection and the control mice treated with a control plasmid. Sequential administration of soluble TNFR-I by a nonviral, intramuscular gene transduction in the early and late post-radiation inflammatory phase prolonged survival of irradiated mice and attenuated the symptoms of lung fibrosis. The psTNFR-I gene transduction may provide a safe and simple method to partially neutralise TNF-α activity and prevent radiation-induced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aderka D, Engelmann H, Maor Y et al (1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 175:323–329

    Article  PubMed  CAS  Google Scholar 

  • Anscher MS (2005) The irreversibility of radiation-induced fibrosis: fact or folklore? J Clin Oncol 23:8551–8552

    Article  PubMed  Google Scholar 

  • Anscher MS, Chen L, Rabbani Z et al (2005) Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int J Radiat Oncol Biol Phys 62:255–259

    Article  PubMed  Google Scholar 

  • Antoniou KM, Mamoulaki M, Malagari K et al (2007) Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol 25:23–28

    PubMed  CAS  Google Scholar 

  • Ao X, Zhao L, Davis MA et al (2009) Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J Hematol Oncol 2:6

    Article  PubMed  Google Scholar 

  • Bargagli E, Galeazzi M, Rottoli P (2004) Infliximab treatment in a patient with rheumatoid arthritis and pulmonary fibrosis. Eur Respir J 24:708

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity: what we do understand and what we do not. FEBS Lett 340:9–16

    Article  PubMed  CAS  Google Scholar 

  • Bragonzi A, Boletta A, Biffi A et al (1999) Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 6:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Broekelmann TJ, Limper AH, Colby TV et al (1991) Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 88:6642–6646

    Article  PubMed  CAS  Google Scholar 

  • Chiang CS, Liu WC, Jung SM (2005) Compartmental responses after thoracic irradiation of mice: strain differences. Int J Radiat Oncol Biol Phys 62:862–871

    Article  PubMed  Google Scholar 

  • Coggle JE, Lambert BE, Moores SR (1986) Radiation effects in the lung. Environ Health Perspect 70:261–291

    Article  PubMed  CAS  Google Scholar 

  • Dent P, Yacoub A, Contessa J et al (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300

    Article  PubMed  CAS  Google Scholar 

  • Distler JH, Schett G, Gay S et al (2008) The controversial role of tumor necrosis factor in fibrotic diseases. Arthritis Rheum 58:2228–2235

    Article  PubMed  CAS  Google Scholar 

  • Erbachere P, Bettinger T, Brion E et al (2004) Genuine DNA/polyethylenimine (PEI) complexes improve transfection properties and cell survival. J Drug Target 12:223–236

    Article  Google Scholar 

  • Finkelstein JN, Johnstone CJ, Baggs R et al (1994) Early alterations in extracellular matrix and transforming growth factor beta expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys 28:621–631

    Article  PubMed  CAS  Google Scholar 

  • Haiping Z, Takayama K, Uchino J et al (2006) Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-beta type II receptor gene. Cancer Gene Ther 13:845–872

    Article  Google Scholar 

  • Hamada N, Kuwano K, Yamada M et al (2005) Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J Immunol 175:1224–1231

    PubMed  CAS  Google Scholar 

  • Heller LC, Jaroszeski MJ, Coppola D et al (2008) Comparison of electrically mediated and liposome complexed plasmid DNA delivery to the skin. Genet Vaccines Ther 6:16

    Article  PubMed  Google Scholar 

  • Huaux F, Arras M, Vink A et al (1999) Soluble tumor necrosis factor (TNF) receptors p55 and p75 and interleukin-10 downregulate TNF-alpha activity during the lung response to silica particles in NMRI mice. Am J Respir Cell Mol Biol 21:137–145

    PubMed  CAS  Google Scholar 

  • Johnston CJ, Wright TW, Rubin P et al (1998) Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and -sensitive mice after thoracic irradiataion. Exp Lung Res 24:321–337

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  • Kalthoff H, Roeder C, Brockhaus M et al (1993) Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor and epidermal growth factor receptor mRNA. J Biol Chem 268:2762–2766

    PubMed  CAS  Google Scholar 

  • Kasai H, Allen JT, Mason RM (2005) TGF-beta induces alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    Article  PubMed  Google Scholar 

  • Khasnis AA, Calabrese LH (2010) Tumor necrosis factor inhibitors and lung disease: a paradox of efficacy and risk. Semin Arthritis Rheum 40:147–163

    Article  PubMed  CAS  Google Scholar 

  • Li YY, Feng YQ, Kadokami T (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751

    Article  PubMed  CAS  Google Scholar 

  • Loetscher H, Steinmetz M, Lesslauer W (1991) Tumor necrosis factor: receptors and inhibitors. Cancer Cell 3:221–226

    CAS  Google Scholar 

  • Małecki M, Przybyszewska M, Janik P (2003) Construction of bicistronic proangiogenic expression vector and its application in experimental angiogenesis in vivo. Acta Biochim Pol 50:875–882

    PubMed  Google Scholar 

  • Małecki M, Trembacz H, Szaniawska B et al (2005) Vascular endothelial growth factor and soluble FLT-1 receptor interactions and biological implications. Oncol Rep 14:1565–1569

    PubMed  Google Scholar 

  • Manthorpe M, Cornefert-Jensen F, Hartikka J (1993) Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 4:419–431

    Article  PubMed  CAS  Google Scholar 

  • Marks LB, Yu X, Vujaskovic Z et al (2003) Radiation-induced lung injury. Semin Radiat Oncol 13:333–345

    Article  PubMed  Google Scholar 

  • Marques LJ, Zheng L, Poulakis N et al (1999) Pentoxyfylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159:508–511

    PubMed  CAS  Google Scholar 

  • Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24

    Article  PubMed  Google Scholar 

  • Miłoszewska J, Gos M, Przybyszewska M et al (2010) Mouse sarcoma L1 cell line holoclones have a stemness signature. Cell Prolif 43:229–234

    Article  PubMed  Google Scholar 

  • Mitsui M, Nishikawa M, Zang L et al (2009) Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression. J Gene Med 11:435–443

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Araki K, Vesin C et al (1995) Expression of a tumor necrosis factor alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis: a mouse model of progressive pulmonary fibrosis. J Clin Invest 96:250–259

    Article  PubMed  CAS  Google Scholar 

  • Morgan GW, Breit SN (1995) Radiation and the lung: reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys 15:361–369

    Google Scholar 

  • Nakamura H, Hino T, Kato S et al (1996) Tumor necrosis factor receptor gene expressions and shedding in human whole lung tissue and pulmonary epithelium. Eur Respir J 9:1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Ogris M, Walker G, Blessing T et al (2003) Tumor targeted gene therapy; strategies for the preparation of ligand-poliethylene glycol polyethylenimine/DNA complexes. J Control Release 91:173–181

    Article  PubMed  CAS  Google Scholar 

  • Oikonomou N, Harokopos V, Zalevski J et al (2006) Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One 1:e108

    Article  PubMed  Google Scholar 

  • Okunieff P, Augustine E, Hicks JE et al (2004) Pentoxyfilline in the treatment of radiation-induced fibrosis. J Clin Oncol 22:2207–2213

    Article  PubMed  CAS  Google Scholar 

  • Olsen NJ, Stein CM (2004) New drugs for rheumatoid arthritis. N Engl J Med 350:2167–2179

    Article  PubMed  CAS  Google Scholar 

  • Piguet PF (1993) Cytokines involved in pulmonary fibrosis. Int Rev Exp Pathol 34PtB:173–181

    Google Scholar 

  • Piguet PF, Collart MA, Grau GE et al (1990) Requirement of tumour necrosis factor for development of silica induced pulmonary fibrosis. Nature 344:245–247

    Article  PubMed  CAS  Google Scholar 

  • Piguet PF, Grau GE, Vesin C et al (1993) Evolution of the collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 77:510–514

    Google Scholar 

  • Proczka RM, Małecki M, Chrostowska-Wynimko J et al (2006) Vascular-endothelial growth factor (VEGF) in patients with peripheral ischemia. J Physiol Pharmacol 57(suppl 4):305–311

    PubMed  Google Scholar 

  • Prosser CC, Yen RD, Wu J (2006) Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol 12:509–515

    PubMed  CAS  Google Scholar 

  • Prud’homme G, Lawson B, Theodofilopulos AN (2001) Anticytokine gene therapy of autoimmune diseases. Exp Opin Biol Ther 1:359–373

    Article  Google Scholar 

  • Przybyszewska M, Miłoszewska J, Rzońca S et al (2009) Experimental gene therapy intervention and radiation-induced late pulmonary fibrosis development. FEBS J 276(suppl 1):337

    Google Scholar 

  • Przybyszewska M, Miłoszewska J, Rzońca S et al (2010) Effectiveness of soluble TNFalpha receptor encoded on plasmid vector in experimental antifibrotic therapy. Acta Biochim Pol 57(suppl 4):206

    Google Scholar 

  • Reyes-Sandoval A, Eartl HC (2004) CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune response. Mol Ther 9:249–287

    Article  PubMed  CAS  Google Scholar 

  • Rube CE, Uthe D, Schmid KW et al (2000) Dose-dependent induction of transforming growth factor β (TGFβ) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 47:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Rube CE, Wilfert F, Palm J et al (2004) Irradiation induces a biphasic expression of proinflammatory cytokines in the lung. Strahlenther Onkol 180:442–448

    PubMed  Google Scholar 

  • Rube CE, Uthe D, Wilfert F et al (2005) The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation. Int J Radiat Oncol Biol Phys 61:1482–1492

    Article  PubMed  Google Scholar 

  • Rubin PC, Johnston JP, Williams S et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  • Sandalon Z, Bruckheimer EM, Lustig KH et al (2004) Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors. J Virol 78:12355–12365

    Article  PubMed  CAS  Google Scholar 

  • Sime PJ, Marr RA, Gauldie D et al (1998) Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol 153:825–832

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Skerret SJ, Chi EY et al (1998) The locus of tumor necrosis factor alpha action in lung inflammation. Am J Respir Cell Mol Biol 19:881–891

    PubMed  CAS  Google Scholar 

  • Smolarczyk R, Cichoń T, Sochanik A et al (2005) Negligible induction of IFN-gamma, IL-12, TNF-alpha by DNA-PEI 750 kDa/albumin complexes. Cytokine 29:283–287

    Article  PubMed  CAS  Google Scholar 

  • Sugano M, Koyanagi M, Tsuchida K et al (2002) In vivo gene transfer of soluble TNF-alpha receptor 1 alleviates myocardial infarction. FASEB J 16:1421–1428

    PubMed  CAS  Google Scholar 

  • Sugano M, Hata T, Tsuchida K et al (2004) Local delivery of soluble TNF-alpha receptor 1 genes reduces infarct size following ischemia/reperfusion injury in rats. Mol Cell Biochem 266:127–132

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DE, Ferris M, Pociask D et al (2005) Tumor necrosis factor- induces transforming growth factor-1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol 32:342–349

    Article  PubMed  CAS  Google Scholar 

  • Trask CW, Joannides T, Harper PG et al (1985) Radiation-induced lung fibrosis after treatment of small cell carcinoma of the lung with very high-dose cyclophosphamide. Cancer 55:57–60

    Article  PubMed  CAS  Google Scholar 

  • Wajant H, Pfizenmeier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  • Walter N, Collar HR, King TE Jr (2006) Current perspectives on the treatment of idiopathic fibrosis. Proc Am Thorac Soc 3:330–338

    Article  PubMed  CAS  Google Scholar 

  • Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20

    PubMed  CAS  Google Scholar 

  • Wolff G, Crystal RG (1997) Biology of pulmonary fibrosis. In: Crystal RG, West JB, Barnes PJ et al (eds) The Lung. Lippincott, Philadelphia, pp 2509–2524

    Google Scholar 

  • Wolthuis EK, Vlaar AP, Choi G et al (2009) Recombinant human soluble tumor necrosis factor-alpha receptor fusion protein partly attenuates ventilator-induced lung injury. Shock 31:262–266

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Kuwano K, Maeyama T et al (2007) Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. J Clin Pathol 60:916–920

    Article  PubMed  Google Scholar 

  • Zhang M, Qian J, Kong FM et al (2008) Inhibition of the TNF-alpha pathway is radioprotective for the lung. Clin Cancer Res 14:1868–1876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Polish Ministry of Science and Higher Education grant N401 077 32/1925. The authors thank Dr. Dariusz Kowalczyk for valuable contribution in this project and Dr. Magdalena Chechlińska, for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Przybyszewska.

About this article

Cite this article

Przybyszewska, M., Miłoszewska, J., Rzońca, S. et al. Soluble TNF-α Receptor I Encoded on Plasmid Vector and Its Application in Experimental Gene Therapy of Radiation-Induced Lung Fibrosis. Arch. Immunol. Ther. Exp. 59, 315–326 (2011). https://doi.org/10.1007/s00005-011-0133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0133-2

Keywords

Navigation