Cathelicidin LL-37: A Multitask Antimicrobial Peptide

  • Robert Bucki
  • Katarzyna Leszczyńska
  • Andrzej Namiot
  • Wojciech Sokołowski


The antimicrobial peptide LL-37 is the only known member of the cathelicidin family of peptides expressed in humans. LL-37 is a multifunctional host defense molecule essential for normal immune responses to infection and tissue injury. LL-37 peptide is a potent killer of different microorganisms with the ability to prevent immunostimulatory effects of bacterial wall molecules such as lipopolysaccharide and can therefore protect against lethal endotoxemia. Additional reported activities of LL-37 include chemoattractant function, inhibition of neutrophil apoptosis, and stimulation of angiogenesis, tissue regeneration, and cytokine release (e.g. IL-8). Cellular production of LL-37 is affected by multiple factors, including bacterial products, host cytokines, availability of oxygen, and sun exposure through the activation of CAP-18 gene expression by vitamin D3. At infection sites, the function of LL-37 can be inhibited by charge-driven interactions with DNA and F-actin released from dead neutrophils and other cells lysed as the result of inflammation. A better understanding of LL-37’s biological properties is necessary for its possible therapeutic application for immunomodulatory purposes as well as in treating bacterial infection.


Antibacterial agents Bacteria Infection hCAP-18 



We thank Drs. Qi Wen and Paul Janmey (University of Pennsylvania) for help with preparing AFM images and discussions and Dr. Paul Savage (Department of Chemistry and Biochemistry, Brigham Young University) for providing us with ceragenin CSA-13.


  1. Adams JS, Liu PT, Chun R et al (2007) Vitamin D in defense of the human immune response. Ann N Y Acad Sci 1117:94–105CrossRefPubMedGoogle Scholar
  2. Andersson E, Sorensen OE, Frohm B et al (2002) Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum Reprod 17:2529–2534CrossRefPubMedGoogle Scholar
  3. Bals R, Wang X, Zasloff M et al (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95:9541–9546CrossRefPubMedGoogle Scholar
  4. Bals R, Weiner DJ, Meegalla RL et al (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 103:1113–1117CrossRefPubMedGoogle Scholar
  5. Bandholtz L, Ekman GJ, Vilhelmsson M et al (2006) Antimicrobial peptide LL-37 internalized by immature human dendritic cells alters their phenotype. Scand J Immunol 63:410–419CrossRefPubMedGoogle Scholar
  6. Barlow PG, Li Y, Wilkinson TS et al (2006) The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 80:509–520CrossRefPubMedGoogle Scholar
  7. Bergman P, Johansson L, Asp V et al (2005) Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol 7:1009–1017CrossRefPubMedGoogle Scholar
  8. Bergman P, Walter-Jallow L, Broliden K et al (2007) The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 5:410–415CrossRefPubMedGoogle Scholar
  9. Berkestedt I, Nelson A, Bodelsson M (2008) Endogenous antimicrobial peptide LL-37 induces human vasodilatation. Br J Anaesth 100:803–809CrossRefPubMedGoogle Scholar
  10. Brandenburg K, Andra J, Muller M et al (2003) Physicochemical properties of bacterial glycopolymers in relation to bioactivity. Carbohydr Res 338:2477–2489CrossRefPubMedGoogle Scholar
  11. Brandenburg LO, Varoga D, Nicolaeva N et al (2008) Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 67:1041–1054CrossRefPubMedGoogle Scholar
  12. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefPubMedGoogle Scholar
  13. Bucki R, Janmey PA (2006) Interact ion of the Gelsolin-derived antibacterial PBP10 peptides with cell membranes and lipids bilayers. Antimicrob Agents Chemother 50:2932–2940CrossRefPubMedGoogle Scholar
  14. Bucki R, Pastore JJ, Randhawa P et al (2004) Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob Agents Chemother 48:1526–1533CrossRefPubMedGoogle Scholar
  15. Bucki R, Georges PC, Espinassous Q et al (2005) Inactivation of endotoxin by human plasma gelsolin. Biochemistry 44:9590–9597CrossRefPubMedGoogle Scholar
  16. Bucki R, Byfield FJ, Janmey PA (2007a) Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputum. Eur Respir J 29:624–632CrossRefPubMedGoogle Scholar
  17. Bucki R, Sostarecz AG, Byfield FJ et al (2007b) Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA or F-actin and its activity in cystic fibrosis sputum. J Antimicrob Chemother 60:535–545CrossRefPubMedGoogle Scholar
  18. Bucki R, Byfield FJ, Kulakowska A et al (2008a) Extracellular gelsolin binds lipoteichoic acid and modulates cellular response to proinflammatory bacterial wall components. J Immunol 181:4936–4944PubMedGoogle Scholar
  19. Bucki R, Namiot DB, Namiot Z et al (2008b) Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J Antimicrob Chemother 62:329–335CrossRefPubMedGoogle Scholar
  20. Carretero M, Escamez MJ, Garcia M et al (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128:223–236CrossRefPubMedGoogle Scholar
  21. Chakraborty K, Ghosh S, Koley H et al (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10:2520–2537CrossRefPubMedGoogle Scholar
  22. Chamorro CI, Weber G, Gronberg A et al (2009) The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol 129:937–944CrossRefPubMedGoogle Scholar
  23. Chuang CM, Monie A, Wu A et al (2009) Treatment with LL-37 peptide enhances the antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther 20:303–313CrossRefPubMedGoogle Scholar
  24. Chung WO, Dommisch H, Yin L et al (2007) Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 13:3073–3083CrossRefPubMedGoogle Scholar
  25. Cinel I, Opal SM (2009) Molecular biology of inflammation and sepsis: a primer. Crit Care Med 37:291–304CrossRefPubMedGoogle Scholar
  26. Ciornei CD, Sigurdardottir T, Schmidtchen A et al (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49:2845–2850CrossRefPubMedGoogle Scholar
  27. Cirioni O, Giacometti A, Ghiselli R et al (2006) LL-37 protects rats against lethal sepsis caused by Gram-negative bacteria. Antimicrob Agents Chemother 50:1672–1679CrossRefPubMedGoogle Scholar
  28. Cirioni O, Ghiselli R, Tomasinsig L et al (2008) Efficacy of LL-37 and granulocyte colony-stimulating factor in a neutropenic murine sepsis due to Pseudomonas aeruginosa. Shock 30:443–448CrossRefPubMedGoogle Scholar
  29. Coffelt SB, Scandurro AB (2008) Tumors sound the alarmin(s). Cancer Res 68:6482–6485CrossRefPubMedGoogle Scholar
  30. Coffelt SB, Waterman RS, Florez L et al (2008) Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion. Int J Cancer 122:1030–1039CrossRefPubMedGoogle Scholar
  31. Conner K, Nern K, Rudisill J et al (2002) The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 47:347–350CrossRefPubMedGoogle Scholar
  32. Cozzolino M, Vidal M, Arcidiacono MV et al (2003) HIV-protease inhibitors impair vitamin D bioactivation to 1, 25-dihydroxyvitamin D. AIDS 17:513–520CrossRefPubMedGoogle Scholar
  33. Davidson DJ, Currie AJ, Reid GS et al (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156PubMedGoogle Scholar
  34. De Y, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074CrossRefGoogle Scholar
  35. den Hertog AL, van Marle J, Veerman EC et al (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387:1495–1502CrossRefGoogle Scholar
  36. Frohm M, Agerberth B, Ahangari G et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263CrossRefPubMedGoogle Scholar
  37. Gaudreault E, Gosselin J (2007) Leukotriene B4-mediated release of antimicrobial peptides against cytomegalovirus is BLT1 dependent. Viral Immunol 20:407–420CrossRefPubMedGoogle Scholar
  38. Ginsburg I (2004) Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics? it is enigmatic why this concept is consistently disregarded. Med Hypotheses 62:367–374CrossRefPubMedGoogle Scholar
  39. Hase K, Murakami M, Iimura M et al (2003) Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 125:1613–1625CrossRefPubMedGoogle Scholar
  40. Heilborn JD, Nilsson MF, Jimenez CI et al (2005) Antimicrobial protein hCAP18/LL-37 is highly expressed in breast cancer and is a putative growth factor for epithelial cells. Int J Cancer 114:713–719CrossRefPubMedGoogle Scholar
  41. Hosaka Y, Koslowski M, Nuding S et al (2008) Antimicrobial host defense in the upper gastrointestinal tract. Eur J Gastroenterol Hepatol 20:1151–1158CrossRefPubMedGoogle Scholar
  42. Islam D, Bandholtz L, Nilsson J et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185CrossRefPubMedGoogle Scholar
  43. Johansson J, Gudmundsson GH, Rottenberg ME et al (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724CrossRefPubMedGoogle Scholar
  44. Kandler K, Shaykhiev R, Kleemann P et al (2006) The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 18:1729–1736CrossRefPubMedGoogle Scholar
  45. Kaus A, Jacobsen F, Sorkin M et al (2008) Host defence peptides in human burns. Burns 34:32–40CrossRefPubMedGoogle Scholar
  46. Khine AA, Del Sorbo L, Vaschetto R et al (2006) Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood 107:2936–2942CrossRefPubMedGoogle Scholar
  47. Kim JE, Kim BJ, Jeong MS et al (2005) Expression and modulation of LL-37 in normal human keratinocytes, HaCaT cells, and inflammatory skin diseases. J Korean Med Sci 20:649–654CrossRefPubMedGoogle Scholar
  48. Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389–406CrossRefPubMedGoogle Scholar
  49. Koczulla R, von Degenfeld G, Kupatt C et al (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672PubMedGoogle Scholar
  50. Kumar A, Yin J, Zhang J et al (2007) Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci 48:4664–4670CrossRefPubMedGoogle Scholar
  51. Lamb HM, Wiseman LR (1998) Pexiganan acetate. Drugs 56:1047–1052 (discussion 1053–1054)Google Scholar
  52. Li X, Li Y, Han H et al (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128:5776–5785CrossRefPubMedGoogle Scholar
  53. Liu PT, Stenger S, Li H et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773CrossRefPubMedGoogle Scholar
  54. Lopez-Garcia B, Lee PH, Yamasaki K et al (2005) Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125:108–115CrossRefPubMedGoogle Scholar
  55. Mallbris L, Edstrom DW, Sundblad L et al (2005) UVB upregulates the antimicrobial protein hCAP18 mRNA in human skin. J Invest Dermatol 125:1072–1074PubMedGoogle Scholar
  56. Mendez-Samperio P, Miranda E, Trejo A (2008) Expression and secretion of cathelicidin LL-37 in human epithelial cells after infection by Mycobacterium bovis Bacillus Calmette-Guerin. Clin Vaccine Immunol 15:1450–1455CrossRefPubMedGoogle Scholar
  57. Mookherjee N, Brown KL, Bowdish DM et al (2006a) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464PubMedGoogle Scholar
  58. Mookherjee N, Wilson HL, Doria S et al (2006b) Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J Leukoc Biol 80:1563–1574CrossRefPubMedGoogle Scholar
  59. Murakami M, Ohtake T, Dorschner RA et al (2002a) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850CrossRefPubMedGoogle Scholar
  60. Murakami M, Ohtake T, Dorschner RA et al (2002b) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095CrossRefPubMedGoogle Scholar
  61. Nagaoka I, Hirota S, Niyonsaba F et al (2001) Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 167:3329–3338PubMedGoogle Scholar
  62. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176:3044–3052PubMedGoogle Scholar
  63. Nijnik A, Hancock RE (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16:41–47CrossRefPubMedGoogle Scholar
  64. Niyonsaba F, Ushio H, Nakano N et al (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604CrossRefPubMedGoogle Scholar
  65. Ooi EH, Wormald PJ, Carney AS et al (2007) Fungal allergens induce cathelicidin LL-37 expression in chronic rhinosinusitis patients in a nasal explant model. Am J Rhinol 21:367–372CrossRefPubMedGoogle Scholar
  66. Overhage J, Campisano A, Bains M et al (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182CrossRefPubMedGoogle Scholar
  67. Park HJ, Cho DH, Kim HJ et al (2009) Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol 129:843–850CrossRefPubMedGoogle Scholar
  68. Peyssonnaux C, Boutin AT, Zinkernagel AS et al (2008) Critical role of HIF-1alpha in keratinocyte defense against bacterial infection. J Invest Dermatol 128:1964–1968CrossRefPubMedGoogle Scholar
  69. Pochet S, Tandel S, Querriere S et al (2006) Modulation by LL-37 of the responses of salivary glands to purinergic agonists. Mol Pharmacol 69:2037–2046CrossRefPubMedGoogle Scholar
  70. Rivas-Santiago B, Hernandez-Pando R, Carranza C et al (2008) Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 76:935–941CrossRefPubMedGoogle Scholar
  71. Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem 281:1636–1643Google Scholar
  72. Schaller-Bals S, Schulze A, Bals R (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165:992–995PubMedGoogle Scholar
  73. Shaykhiev R, Beisswenger C, Kandler K et al (2005) Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289:L842–L848CrossRefPubMedGoogle Scholar
  74. Sheils CA, Kas J, Travassos W et al (1996) Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol 148:919–927PubMedGoogle Scholar
  75. Skokos D, Nussenzweig MC (2007) CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med 204:1525–1531PubMedGoogle Scholar
  76. Smeianov V, Scott K, Reid G (2000) Activity of cecropin P1 and FA-LL-37 against urogenital microflora. Microbes Infect 2:773–777CrossRefPubMedGoogle Scholar
  77. Tai EK, Wong HP, Lam EK et al (2008) Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway. J Cell Biochem 104:251–258CrossRefPubMedGoogle Scholar
  78. Tang JX, Janmey PA (1996) The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem 271:8556–8563CrossRefPubMedGoogle Scholar
  79. Tang JX, Wen Q, Bennett A et al (2005) Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 289:L599–L605CrossRefPubMedGoogle Scholar
  80. Thomas-Virnig CL, Centanni JM, Johnston CE et al (2009) Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol Ther 17:562–569CrossRefPubMedGoogle Scholar
  81. Tjabringa GS, Ninaber DK, Drijfhout JW et al (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140:103–112CrossRefPubMedGoogle Scholar
  82. Tokumaru S, Sayama K, Shirakata Y et al (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668PubMedGoogle Scholar
  83. Torossian A, Gurschi E, Bals R et al (2007) Effects of the antimicrobial peptide LL-37 and hyperthermic preconditioning in septic rats. Anesthesiology 107:437–441CrossRefPubMedGoogle Scholar
  84. Travis SM, Anderson NN, Forsyth WR et al (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755CrossRefPubMedGoogle Scholar
  85. von Haussen J, Koczulla R, Shaykhiev R et al (2008) The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59:12–23CrossRefGoogle Scholar
  86. Wah J, Wellek A, Frankenberger M et al (2006) Antimicrobial peptides are present in immune and host defense cells of the human respiratory and gastrointestinal tracts. Cell Tissue Res 324:449–456CrossRefPubMedGoogle Scholar
  87. Walker TS, Tomlin KL, Worthen GS et al (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701CrossRefPubMedGoogle Scholar
  88. Weiner DJ, Bucki R, Janmey PA (2003) The antimicrobial activity of the cathelicidin LL37 is inhibited by F-actin bundles and restored by gelsolin. Am J Respir Cell Mol Biol 28:738–745CrossRefPubMedGoogle Scholar
  89. Woo JS, Jeong JY, Hwang YJ et al (2003) Expression of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg 129:211–214PubMedGoogle Scholar
  90. Yoshioka M, Fukuishi N, Kubo Y et al (2008) Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity. Biol Pharm Bull 31:212–216CrossRefPubMedGoogle Scholar
  91. Yu J, Mookherjee N, Wee K et al (2007) Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. J Immunol 179:7684–7691PubMedGoogle Scholar
  92. Zasloff M (2005) Sunlight, vitamin D, and the innate immune defenses of the human skin. J Invest Dermatol 125:16–17CrossRefGoogle Scholar
  93. Zasloff M (2006) Fighting infections with vitamin D. Nat Med 12:388–390CrossRefPubMedGoogle Scholar
  94. Zhang Z, Cherryholmes G, Shively JE (2008) Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 84:780–788CrossRefPubMedGoogle Scholar
  95. Zheng Y, Niyonsaba F, Ushio H et al (2007) Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 157:1124–1131CrossRefPubMedGoogle Scholar
  96. Zuyderduyn S, Ninaber DK, Hiemstra PS et al (2006) The antimicrobial peptide LL-37 enhances IL-8 release by human airway smooth muscle cells. J Allergy Clin Immunol 117:1328–1335CrossRefPubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2009

Authors and Affiliations

  • Robert Bucki
    • 1
  • Katarzyna Leszczyńska
    • 2
  • Andrzej Namiot
    • 3
  • Wojciech Sokołowski
    • 1
  1. 1.Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Diagnostic MicrobiologyMedical University of BialystokBialystokPoland
  3. 3.Department of AnatomyMedical University of BialystokBialystokPoland

Personalised recommendations