Enhancing the Structural Performance of Masonry Structures by Post-Tensioning

  • Leonardo Todisco
  • Elizabeth Stocks
  • Javier León
  • Hugo Corres
Research
  • 27 Downloads

Abstract

Despite the evident advantages of combining masonry with prestress, their joint use has been poorly exploited during the last decades. This paper claims the high potential of masonry as a primary load-bearing material when combined with post-tensioning. This work deals with arch footbridges and antifunicular structures. With respect to the first, this research illustrates the introduction of external loads by internal post-tensioning to favourably increase the axial forces in a masonry arch, and consequently improving its structural behaviour. With respect to the second, this work shows how bending moments in a non-funicular 2D curved geometry can be eliminated through an external post-tensioning system. In summary, this research strongly expands the range of post-tensioned masonry structures that exhibit a bending-free (or quasi bending-free) behaviour and, de facto, opens up new possibilities for designs that combine structural efficient solutions with traditional materials.

Keywords

Masonry Prestress Post-tensioning Bending-free Funicular behaviour Equilibrium 

References

  1. Allen, E. and W. Zalewski. 2009. Form and Forces Designing Efficient, Expressive Structures. New York: John Wiley & Sons.Google Scholar
  2. Brown, A. 2001. The engineer’s contribution to contemporary architecture: Peter Rice. London: Thomas Telford PublishingGoogle Scholar
  3. Campa, M. 2009. EE Viollet-le-Duc: Innovation and tradition in architecture. Language of form and structure in the conception of polyhedral vaults. In: Proceedings of the third international congress on construction history, ed. K.E. Kurrer, L. Werner, W. Volker, 1-8. Berlin: neunplus1Google Scholar
  4. Colas, A., Garnier, D. and JC. Morel. 2013. Yield design modelling of dry joint retaining structures. Construction and Building Materials 41: 912–917CrossRefGoogle Scholar
  5. Colella, M. 2017. Structures, Algorithms and Stone/Timber Prototypes. Nexus Network Journal 19(1): 209-215CrossRefGoogle Scholar
  6. Cremona, L. 1872. Le figure reciproche nella statica grafica. Milano: Tipografia di G. Bernardoni.MATHGoogle Scholar
  7. Culmann, K. 1864. Die graphische Statik. Zürich: Verlag von Meyer and Zeller.MATHGoogle Scholar
  8. Dernie, D. 2003. New stone architecture. London: Laurence King.Google Scholar
  9. Dickson, M.G.T. and G.R. Werran. 1999. The Post-Tensioned, Prestressed Ketton Stone Perimeter Frame of The Queen’s Building, Emmanuel College, Cambridge. The Structural Engineer 77 (20): 19-29Google Scholar
  10. Fallacara, Giuseppe and Mauriziom Barberio. 2017. Parametric morphogenesis, robotic fabrication & construction of novel stereotomic hypar morphologies: Hypar Gate, Hypar Wall and Hypar Vault. In: Handbook of Research on Form and Morphogenesis in Modern Architectural Contexts, ed. D’Uva Domenico, 329-353. Hershey: IGI Global. https://www.igi-global.com/chapter/parametric-morphogenesis-robotic-fabrication-and-construction-of-novel-stereotomic-hypar-morphologies/198095. Accessed 2 October 2017.
  11. Fallacara, G., Brocato, M. and L. Tamborero. 2010. E. E. Viollet-le-Duc et les ossatures constructives mixtes: spéculations morphologiques et constructives sur le thème de l’arc armé, IIe colloque international de Pierrefonds. http://www.atelierfallacara.it/_download/Articoli/47.pdf. (accessed 1 Nov 2017).
  12. Fivet, C. and D. Zastavni. 2012. Robert Maillart’s key methods from the Salginatobel Bridge design process (1928). Journal of the International Association for Shell and Spatial Structures 53(171): 39–47.Google Scholar
  13. Fivet, C. and D. Zastavni. 2015. A fully geometric approach for interactive constraint-based structural equilibrium design. Computer-Aided Design 61(0), 42–57.CrossRefGoogle Scholar
  14. Heyman, J. 1966. The stone skeleton. International Journal of Solids and Structures 2(2): 249–279.CrossRefGoogle Scholar
  15. Kawaguchi, Mamoru. 2002. On how concrete spatial structures can be beautiful. In: Proceedings of the 1st fib Congress, ed. International Federation for Structural Concrete, 1-12. Osaka: Prefectural GovernmentGoogle Scholar
  16. Lancaster, L. C. 2005. Concrete Vaulted Construction in Imperial Rome. New York: Cambridge University Press.CrossRefGoogle Scholar
  17. Lenczner, E. 1994. The Design of the Stone Facade to the Pavilion of the Future, Expo’92, Seville. The Structural Engineer 72(11): 171–177.Google Scholar
  18. Leonhardt, F. 1964. Prestressed concrete; design and construction. Berlin: W. Ernst.Google Scholar
  19. Lin, T.-Y. 1963. Design of prestressed concrete structures. New York: Wiley.Google Scholar
  20. Malomo, Daniele. and Valerio Varano. 2015. Lithic Hypar: New Frontiers in Structural Stone’s Research. In Proceedings of the COMSOL Conference 2015. Grenoble: COMSOL Conference.Google Scholar
  21. Martinez, J. L. 2003. Determinación teórica y experimental de diagramas de interacción de esfuerzos en estructuras de fábrica y aplicación al análisis de construcciones históricas. Ph.D. Thesis, Universidad Politécnica de Madrid.Google Scholar
  22. McNeel, R. 2014a. Grasshopper generative modeling for Rhino. Computer software.Google Scholar
  23. McNeel, R. 2014b. Rhinoceros NURBS modeling for Windows. Computer software.Google Scholar
  24. Misiunaite, I. 2013. Structural Behaviour and Stability of Steel Beam-Column Elements in Under-Deck Cable-Stayed Bridge. Ph.D. Thesis, VGTU leidykla Technika.Google Scholar
  25. Pirard, A. 1967. La Statique graphique: statique graphique, science introductive à l’art de construire. Liège: Vaillant-Carmanne.Google Scholar
  26. Potenza, D. 2005. La pietra armata: concezione e costruzione della chiesa di padre Pio, progettata da Renzo Piano. Foggia: Grenzi.Google Scholar
  27. Ramos-Casquero, A. 2016. Caracterización estructural de los rellenos situados en el trasdós de bóvedas de edificios históricos. Ph.D. Thesis, Universidad Politécnica de Madrid.Google Scholar
  28. Romo, Jose. 2017. Los puentes de piedra: visiones desde la Ingeniería y las Ciencias Sociales. In: Los puentes de piedra (o ladrillo) antaño y hogaño, eds. Javier León and José Maria Goicoloa, 229-241. Madrid: Fundación Juanelo Turriano.Google Scholar
  29. Ruiz-Teran, A. M. and A.C. Aparicio. 2007. Two new types of bridges: under-deck cable-stayed bridges and combined cable-stayed bridges - the state of the art. Canadian Journal of Civil Engineering 34(8): 1003–1015.CrossRefGoogle Scholar
  30. Sanmartín, A. 1998. Una prospectiva de las tecnologías de las estructuras espaciales. Los puentes. Informes de La Construcción 50(455): 53–63.CrossRefGoogle Scholar
  31. Stocks, E. 2017. Estudio tipológico de bóvedas pretensadas de fábrica. Master thesis, Universidad Politécnica de Madrid.Google Scholar
  32. Strasky, J. 2003. The power of prestressing. Structural Concrete 4(1): 25–43.CrossRefGoogle Scholar
  33. Strasky, J. 2005. Stress ribbon and cable-supported pedestrian bridges. London: Thomas Telford.CrossRefGoogle Scholar
  34. Todisco, L. 2016. Funicularity and Equilibrium for High-Performance Conceptual Design. Ph.D. Thesis, Universidad Politécnica de MadridGoogle Scholar
  35. Todisco, L., Corres, H. and C. Mueller. 2016. Funicularity through External Posttensioning: Design Philosophy and Computational Tool. Journal of Structural Engineering 142(2): 1–9.CrossRefGoogle Scholar
  36. Todisco, L. and H. Corres. 2017. New opportunities for the conceptual design of material-efficient antifunicular structures. Hormigón Y Acero.  https://doi.org/10.1016/j.hya.2017.04.010 Google Scholar
  37. Todisco, L., Fivet, C., Corres, H. and C. Mueller 2015. Design and exploration of externally post-tensioned structures using graphic statics. Journal of the International Association for Shell and Spatial Structures 56(4): 249–258.Google Scholar
  38. Todisco, L. and C. Mueller 2016. Externally post-tensioned structures: Validation through physical models. In: Proceedings of the 3rd International Conference on Structures and Architecture, ed. Paulo Cruz, 1144–1151. Guimarães: ICSA.Google Scholar
  39. Van Mele, T., Lachauer, L., Rippmann, M. and P. Block. 2012. Geometry-based understanding of structures. Journal of the International Association for Shell and Spatial Structures 53(174): 285–295.Google Scholar
  40. Varignon, P. 1725. Nouvelle mécanique ou statique 1. Paris: Jombert.Google Scholar
  41. Viollet-le-Duc, E. 1863-1872. Entretiens sur l’architecture. Paris: Q. Morel et cieGoogle Scholar
  42. Wolfe, W. S. 1921. Graphical analysis; a text book on graphic statics. New York: McGraw-Hill book Co.Google Scholar

Copyright information

© Kim Williams Books, Turin 2018

Authors and Affiliations

  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations