Effects of vacuum infiltration, Agrobacterium cell density and acetosyringone concentration on Agrobacterium-mediated transformation of bread wheat

Abstract

The recent advances in genome-wide transcriptome analysis have enabled researchers to identify new genes and manipulate the genome through novel genetic engineering methods to improve plant tolerance to different stresses. We conducted a genome-wide transcriptome analysis to determine tomato genes affecting the salt stress response. The results showed that among the 5784 genes that were responsive to salt stress, 103 genes (1.8%) encode transcription factors, of which 69 (1.2%) were upregulated and 34 (0.6%) were downregulated. The largest group of genes upregulated in response to salt stress (17 genes) is related to the ethylene response transcription factors (ERF) family. Specifically, it was found that the gene JERF1, encoding ERF in tomato, is upregulated in response to salt stress. In the present study we developed a new Agrobacterium-mediated transformation method to deliver the JERF1 gene to mature wheat embryos. It was investigated whether the factors vacuum infiltration, Agrobacterium cell density (OD600 1.0 and its dilutions 1:20, 2:20 and 3:20), the acetosyringone concentration (0, 200 and 400 μM) and the interaction between these factors affect transformation. To this end, Agrobacterium carrying pGWB14-JERF1 was injected into soaked wheat seeds, and T0 transgenic plants were obtained in the greenhouse. Molecular analysis of T0 plants was performed. The highest transformation efficiency was obtained under vacuum infiltration, 200 μM acetosyringone and 1:20 dilution. Notably, we used the in planta transformation method to overcome some of the problems of traditional wheat transformation methods e.g., sterile conditions, recalcitrant regeneration, time-constraints and somaclonal variations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    http://www.affymetrix.com. Accessed February 2018.

  2. 2.

    http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi. Accessed March 2018.

  3. 3.

    http://plntfdb.bio.uni-potsdam.de/v3.0/). Accessed March 2018.

  4. 4.

    http://bioinfogp.cnb.csic.es/tools/venny/). Accessed March 2018.

References

  1. Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52(358):1135–1142. https://doi.org/10.1093/jexbot/52.358.1135

    CAS  Article  PubMed  Google Scholar 

  2. Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N (2018a) Agrobacterium-mediated transformation of ovary of bread wheat (Triticum aestivum L.) with a gene encoding a tomato ERF protein. Plant Cell Biotechnol Mol Biol 19(1 & 2):24–33

    Google Scholar 

  3. Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H (2018b) Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ 6:e4631. https://doi.org/10.7717/peerj.4631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30(12):2281–2292. https://doi.org/10.1007/s00299-011-1133-8

    CAS  Article  PubMed  Google Scholar 

  5. Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27(5):495–502. https://doi.org/10.1007/BF02705046

    CAS  Article  PubMed  Google Scholar 

  6. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980. https://doi.org/10.1104/pp.115.3.971

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Danphitsanuparn P, Boonsnongcheep P, Boriboonkaset T, Chintapakorn Y, Prathanturarug S (2012) Effects of Agrobacterium rhizogenes strains and other parameters on production of isoflavonoids in hairy roots of Pueraria candollei Grah. ex Benth. var. candollei. Plant Cell Tissue Organ Cult 111:315–322. https://doi.org/10.1007/s11240-012-0196-8

    CAS  Article  Google Scholar 

  8. de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28(3):387–395. https://doi.org/10.1007/s00299-008-0646-2

    CAS  Article  PubMed  Google Scholar 

  9. Feldmann KA (1987) David Marks M Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208(1):1–9. https://doi.org/10.1007/BF00330414

    CAS  Article  Google Scholar 

  10. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35(1–2):205–218

    CAS  Article  Google Scholar 

  11. Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145(4):1192–1200. https://doi.org/10.1104/pp.107.111575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1(1):5–14. https://doi.org/10.1186/1746-4811-1-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  14. Koetle MJ, Finnie JF, Balázs E, Van Staden J (2015) A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S Afr J Bot 98:37–44

    CAS  Article  Google Scholar 

  15. Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep. 22(7):465–470. https://doi.org/10.1007/s00299-003-0710-x

    CAS  Article  PubMed  Google Scholar 

  16. Li S, Zhao DG, Wu YJ, Tian XE (2009) A simplified seed transformation method for obtaining transgenic Brassica napus plants. Agric Sci China 8(6):658–663. https://doi.org/10.1016/S1671-2927(08)60261-8

    CAS  Article  Google Scholar 

  17. Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of Indica rice. Plant Cell Rep 28(7):1065–1074. https://doi.org/10.1007/s00299-009-0706-2

    CAS  Article  PubMed  Google Scholar 

  18. Liu Z, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16(189):189. https://doi.org/10.1007/s11032-005-6616-2

    CAS  Article  Google Scholar 

  19. Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34(10):1835–1848. https://doi.org/10.1007/s00299-015-1831-8

    CAS  Article  PubMed  Google Scholar 

  20. Miao MM, Xu R, Zheng LJ, Zhou HL, Zhang ZD, Cheng H (2009) High-efficiency Agrobacterium tumefaciens-mediated transformation of cucumber (Cucumis sativus L.) using stem nodes as explants. J Hortic Sci Biotechnol 84:199–203. https://doi.org/10.1080/14620316.2009.11512504

    CAS  Article  Google Scholar 

  21. Nanasato Y, Konagaya KI, Okuzaki A, Tsuda M, Tabei Y (2013) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep. 7(3):267–276. https://doi.org/10.1007/s11816-012-0260-1

    Article  PubMed  Google Scholar 

  22. Park BJ, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep 24(8):494–500. https://doi.org/10.1007/s00299-005-0973-5

    CAS  Article  PubMed  Google Scholar 

  23. Peiravian Kazerooni F, Shabani M, Alemzadeh A (2016) Development of an efficient and simple in planta transformation method for barley (Hordeum vulgare). Plant Cell Biotechnol Mol Biol 17:191–198

    Google Scholar 

  24. Poirier Y, Ventre G, Nawrath C (2000) High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor Appl Genet 100:4887–5493

    Article  Google Scholar 

  25. Rajagopalan PA, Perl-Treves R (2005) Improved cucumber transformation by a modified explant dissection and selection protocol. Hort Sci 40(2):431–435. https://doi.org/10.21273/HORTSCI.40.2.431

    Article  Google Scholar 

  26. Razzaq A, Hafiz IA, Mahmood I, Hussain A (2011) Development of in planta transformation protocol for wheat. Afr J Biotechnol 10(5):740–750. https://doi.org/10.5897/AJB10.1304

    CAS  Article  Google Scholar 

  27. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284(6):455–475. https://doi.org/10.1007/s00438-010-0580-1

    CAS  Article  PubMed  Google Scholar 

  28. Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298. https://doi.org/10.1007/BF00021308

    CAS  Article  PubMed  Google Scholar 

  29. Simmons CW, VanderGheynst JS, Upadhyaya SK (2009) A model of Agrobacterium tumefaciens vacuum infiltration into harvested leaf tissue and subsequent in planta transgene transient expression. Biotechnol Bioeng 102:965–970. https://doi.org/10.1002/bit.22118

    CAS  Article  PubMed  Google Scholar 

  30. Subramaniam S, Samian R, Rathinam X (2009) Preliminary factors influencing transient expression of Gusa in Dendrobium Savin White protocorm-like bodies (PLBs) using Agrobacterium-mediated transformation system. World Appl SCi J 7(10):1295–1307

    CAS  Google Scholar 

  31. Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100(4):391–397. https://doi.org/10.1263/jbb.100.391

    CAS  Article  PubMed  Google Scholar 

  32. Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102(3):162–170. https://doi.org/10.1263/jbb.102.162

    CAS  Article  PubMed  Google Scholar 

  33. Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223. https://doi.org/10.1385/1-59745-003-0:215

    Article  PubMed  Google Scholar 

  34. Tahmasebi A, Ashrafi-Dehkordi E, Shahriari AG, Mazloomi SM, Ebrahimie E (2019) Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton. Prog Biophys Mol Biol 1(146):112–122. https://doi.org/10.1016/j.pbiomolbio.2019.02.005

    CAS  Article  Google Scholar 

  35. Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40(9):3785–3799. https://doi.org/10.1093/nar/gkr1265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Wu L, Chen X, Ren H, Zhang Z, Zhang H, Wang J, Wang XC, Huang R (2007) ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta 226(4):815–825. https://doi.org/10.1007/s00425-007-0528-9

    CAS  Article  PubMed  Google Scholar 

  37. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004) The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270. https://doi.org/10.1007/s00425-004-1347-x

    CAS  Article  PubMed  Google Scholar 

  38. Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774. https://doi.org/10.1007/s00425-010-1208-8

    CAS  Article  PubMed  Google Scholar 

  39. Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81(3):273–286. https://doi.org/10.1007/s11103-012-9997-8

    CAS  Article  PubMed  Google Scholar 

  40. Zinati Z, Alemzadeh A, KayvanJoo AH (2016) Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis. Physiol Mol Biol Plants 22(1):163–174. https://doi.org/10.1007/s12298-016-0351-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by Shiraz and Hiroshima Universities. We express appreciation Prof. T Nakagawa, Shimane University, Japan for the kind gift of pGWB14. This project was funded by 82494194.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abbas Alemzadeh.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 205 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashrafi-Dehkordi, E., Alemzadeh, A., Tanaka, N. et al. Effects of vacuum infiltration, Agrobacterium cell density and acetosyringone concentration on Agrobacterium-mediated transformation of bread wheat. J Consum Prot Food Saf 16, 59–69 (2021). https://doi.org/10.1007/s00003-020-01312-y

Download citation

Keywords

  • Acetosyringone
  • Agrobacterium tumefaciens
  • Microarray analysis
  • Vacuum infiltration
  • Wheat transformation