Skip to main content
Log in

Estimation of metal residues in Oreochromis niloticus and Mugil cephalus intended for human consumption in Egypt: a health risk assessment study with some reduction trials

  • Research Article
  • Published:
Journal of Consumer Protection and Food Safety Aims and scope Submit manuscript

Abstract

Fish, including tilapia (Oreochromis niloticus) and mullet (Mugil cephalus), is a major source of essential amino acids, omega-3 fatty acids, vitamins and minerals. However, fish as aquatic organism is highly exposed to environmental pollutants such as heavy metals. This study investigated the residual concentrations of lead (Pb) and cadmium (Cd) as toxic metals, and copper (Cu) and zinc (Zn) as essential trace elements in tilapia and mullet intended for human consumption in six major cities in Egypt. Correlation analysis between metal content and fish biometrics was done. Fish is heat-treated before consumption in Egypt; therefore, the effect of heat treatment, either alone or in combination with ascorbic acid 2%, on the residual content of heavy metals in tilapia was investigated. Dietary intake and health risk assessment for the measured metals were calculated. The achieved results indicated higher contents of Pb and Cd in the examined fish compared to the established maximum residual concentrations. Immersion of tilapia in ascorbic acid 2% followed by pan-frying significantly reduced metal load in the fish muscle; however, grilling of fish increased the metal content, probably due to water evaporation and concentration of metals in the fish muscle. Estimation of dietary intakes of such metals through fish consumption indicated potential exposure of Egyptians to the adverse effects of Pb and Cd. At the same time, tilapia and mullet can partially provide humans with their needs of the essential trace elements (Cu and Zn). In conclusion, consumption of contaminated fish with Pb and Cd may constitute potential health hazards for people heavily consuming such fish. Immersion of fish in ascorbic acid 2% for 30 min followed by pan-frying is recommended for reduction of metal load in the fish. Continuous monitoring programs for toxic metal contents in fish are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Gaber R, Abdel-Ghaffar F, Abdallah Shazly M, Morsy K, Al Quraishy S, Mohamed S, Mehlhorn H (2017) Morphological re-description of Electrotaenia malapteruri (Cestoda: Proteocephalidae) and Dujardinnascaris malapteruri (Nematoda: Heterocheilidae) infecting the Electric catfish Malapterurus electricus and heavy metal accumulation in host and parasites in relation to water and sediment analysis in Lake Manzala, North Delta, Egypt. Acta Parasitol 62(2):319–335

    PubMed  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Toxicological profile for copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf. Accessed 15 May 2018

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf. Accessed 15 May 2018

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxfaqs/tfacts5.pdf. Accessed 15 May 2018

  • Ajumobi OO, Tsofo A, Yango M, Aworh MK, Anagbogu I, Mohammed NA, Umar-Tsafe N, Mohammed S, Abdullahi M, Davis L, Idris S, Poggensee G, Nguku P, Gitta S, Nsubuga P (2014) High concentration of blood lead levels among young children in Bagega community, Zamfara—Nigeria and the potential risk factor. Pan Afr Med J 18:1–14

    Article  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2011) Occurrence of heavy metals in fish: a study for impact assessment in industry prone aquatic environment around Kolkata in India. Environ Monit Assess 181(1–4):51–61

    Article  PubMed  CAS  Google Scholar 

  • Almeida JA, Novelli ELB, Dal Pai Silva M, Alves Júnior R (2001) Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut 114:169–175

    Article  PubMed  CAS  Google Scholar 

  • Alm-Eldeen AA, Donia T, Alzahaby S (2018) Comparative study on the toxic effects of some heavy metals on the Nile Tilapia, Oreochromis niloticus, in the Middle Delta, Egypt. Environ Sci Pollut Res Int 25(15):14636–14646

    Article  PubMed  CAS  Google Scholar 

  • Atia AS, Darwish WS, Zaki MS (2018) Monitoring of heavy metal residues, metal-metal interactions and the effect of cooking on the metal load in shellfish. J Anim Plant Sci 28(3):732–743

    Google Scholar 

  • Atta MB, Sabaie LA, Noaman MA, Kassab HE (1997) The effect of cooking on the concentration of heavy metals in fish (Tilapia nilotica). Food Chem 58:1–4

    Article  CAS  Google Scholar 

  • Aydin-Onen S, Kucuksezgin F, Kocak F, Açik S (2015) Assessment of heavy metal contamination in Hediste diversicolor (O.F. Müller, 1776), Mugil cephalus (Linnaeus, 1758), and surface sediments of Bafa Lake (Eastern Aegean). Environ Sci Pollut Res Int 22(11):8702–8718

    Article  PubMed  CAS  Google Scholar 

  • Banerjee U, Gupta S (2012) Source and distribution of lead, cadmium, iron and manganese in the river Radomar near Asansol Industrial Area, West Bengal, India. Int J Environ Sci 2:1531–1542

    CAS  Google Scholar 

  • Bawuro AA, Voegborlo RB, Adimado AA (2018) Bioaccumulation of heavy metals in some tissues of fish in lake Geriyo, Adamawa state, Nigeria. J Environ Public Health 2018:1854892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bervoets L, Knapen D, De Jonge M, Van Campenhout K, Blust R (2013) Differential hepatic metal and metallothionein levels in three Feral fish species along a metal pollution gradient. PLoS One 8(3):e60805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connan O, Tack K (2010) Metals in marine environment (mollusc Patella sp., fish Labrus bergylta, crustacean Cancer pagurus, beach sand) in a nuclear area, the North Cotentin (France). Environ Monit Assess 165(1–4):67–86

    Article  PubMed  CAS  Google Scholar 

  • Dang F, Wang WX (2009) Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet. Aquat Toxicol 95:248–255

    Article  PubMed  CAS  Google Scholar 

  • Darwish WS, Ikenaka Y, Nakayama S, Ishizuka M (2014) The effect of copper on the mRNA expression profile of xenobiotic-metabolizing enzymes in cultured rat H4-II-E cells. Biol Trace Elem Res 158(2):243–248

    Article  PubMed  CAS  Google Scholar 

  • Darwish WS, Hussein MA, El-Desoky KI, Ikenaka Y, Nakayama S, Mizukawa H, Ishizuka M (2015a) Incidence and public health risk assessment of toxic metal residues (cadmium and lead) in Egyptian cattle and sheep meats. Int Food Res J 22(4):1719–1726

    CAS  Google Scholar 

  • Darwish WS, Ikenaka Y, Nakayama S, Mizukawa H, Ishizuka M (2015b) Mutagenicity of modelled-heat-treated meat extracts: mutagenicity assay, analysis and mechanism of mutagenesis. Jpn J Vet Res 63(4):173–182

    PubMed  Google Scholar 

  • Darwish WS, Ikenaka Y, Nakayama S, Mizukawa H, Ishizuka M (2016) Constitutive effects of lead on aryl hydrocarbon receptor gene battery and protection by β-carotene and ascorbic acid in human HepG2 cells. J Food Sci 81(1):T275–T281

    Article  PubMed  CAS  Google Scholar 

  • Djedjibegovic J, Larssen T, Skrbo A, Marjanović A, Sober M (2012) Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 131(2):469–476

    Article  CAS  Google Scholar 

  • El-Khayat HM, Mahmoud KM, Gaber HS, Abdel-Hamid H, Abu Taleb HM (2015) Studies on the effect of pollution on Lake Manzala ecosystem in Port-Said, Damietta and Dakahlia Governorates Egypt. J Egypt Soc Parasitol 45(1):153–166

    Article  PubMed  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress Part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  • Ersoy B, Yanar Y, Kucukgulmez A, Celik M (2006) Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1780). Food Chem 99:748–751

    Article  CAS  Google Scholar 

  • European Commission (EC) (2006) Commission Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Access link http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006R1881:20100701:EN:PDF. Accessed 20 Apr 2018

  • Food and Agricultural Organization (FAO) (2003) Nutrition Country Profiles—EGYPT. FAO, Rome, Italy. http://www.fao.org/docrep/017/aq037e/aq037e.pdf. Accessed 16 Apr 2018

  • Gokoglu N, Yerlikay P, Cengiz E (2004) Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem 84:19–22

    Article  CAS  Google Scholar 

  • Guerra-García JM, Ruiz-Tabares A, Baeza-Rojano E, Cabezas MP, Díaz-Pavón JJ, Pacios I, Maestre M, Gonzalez AR, Espinosa F, García Gómez JC (2010) Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas? Ecol Indicat 10:734–743

    Article  CAS  Google Scholar 

  • Ismahene G, El Hadi KM (2012) Assessment of heavy metal concentrations (Lead, Cadmium and Zinc) in three Crustacean species fished for in two regions of eastern Algeria. Ann Biol Res 3(6):2838–2842

    CAS  Google Scholar 

  • Javaheri Baboli M, Velayatzadeh M (2013) Determination of heavy metals and trace elements in the muscles of marine shrimp, Fenneropenaeus merguiensis from Persian Gulf, Iran. J Anim Plant Sci 23(3):786–791

    CAS  Google Scholar 

  • Jiang WD, Liu Y, Jiang J, Wu P, Feng L, Zhou XQ (2015) Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol. Aquat Toxicol 159:245–255

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Qin D, Chen Z, Tang S, Bai S, Mou Z (2016) Heavy metal levels in fish from Heilongjiang River and potential health risk assessment. Bull Environ Contam Toxicol 97(4):536–542

    Article  PubMed  CAS  Google Scholar 

  • Johnson AR, Munoz A, Gottlieb JL, Jarrard DF (2007) High dose zinc increases hospital admissions due to genitourinary complications. J Urol 177:639–643

    Article  PubMed  CAS  Google Scholar 

  • Kalogeropoulos N, Karavoltsos S, Sakellari A, Avramidou S, Dassenakis M, Scoullos M (2012) Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food Chem Toxicol 50:3702–3708

    Article  PubMed  CAS  Google Scholar 

  • Khemis IB, Besbes Aridh N, Hamza N, M’Hetli M, Sadok S (2017) Heavy metals and minerals contents in pikeperch (Sander lucioperca), carp (Cyprinus carpio) and flathead grey mullet (Mugil cephalus) from Sidi Salem Reservoir (Tunisia): health risk assessmentrelated to fish consumption. Environ Sci Pollut Res Int 24(24):19494–19507

    Article  PubMed  CAS  Google Scholar 

  • Komsta-Szumska E, Chmielnicka J (1983) Effect of zinc, cadmium or copper on mercury distribution in rat tissues. Toxicol Lett 17:349–354

    Article  PubMed  CAS  Google Scholar 

  • Mansour SA, Sidky MM (2002) Ecotoxicological studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate, Egypt. Food Chem 78:15–22

    Article  CAS  Google Scholar 

  • Morgan JN, Berry MR, Graves RL (1997) Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. J Expo Anal Environ Epidemiol 7(1):119–133

    PubMed  CAS  Google Scholar 

  • Morshdy AE, Hafez AE, Darwish WS, Hussein MA, Tharwat AE (2013) Heavy metal residues in canned fishes in Egypt. Jpn J Vet Res 61(Suppl):S54–S57

    PubMed  Google Scholar 

  • Muñoz-Nájera MA, Barrera-Escorcia G, Ramírez-Romero P, Tapia-Silva FO, Rosas-Cedillo R (2018) Heavy metal bioaccumulation in Oreochromis niloticus from Tenango Dam, Puebla, Mexico. Environ Monit Assess 190(5):280. https://doi.org/10.1007/s10661-018-6670-y

    Article  PubMed  CAS  Google Scholar 

  • Mustafa C, Guluza RA (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136

    Article  Google Scholar 

  • Playle RC (1998) Modelling metal interactions at fish gills. Sci Total Environ 219(2–3):147–163

    Article  CAS  Google Scholar 

  • Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99

    PubMed  CAS  Google Scholar 

  • Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Santi A, Toni C (2014) Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium. Ecotoxicol Environ Safe 100:188–192

    Article  CAS  Google Scholar 

  • Raknuzzaman M, Ahmed MK, Islam MS, Habibullah-Al-Mamun M, Tokumura M, Sekine M, Masunaga S (2016) Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ Sci Pollut Res Int 23(17):17298–17310

    Article  PubMed  CAS  Google Scholar 

  • Sobiecki JG, Appleby PN, Bradbury KE, Key TJ (2016) High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr Res 36(5):464–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L (2017) Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 66:497–523

    Article  PubMed  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1989) Risk Assessment Guidance for Superfund, Vol 1. EPA/540/1-89/002. Office of Emergency and Remedial Response, US EPA, Washington, DC

  • United States Environmental Protection Agency (USEPA) (2010) Integrated Risk Information System (IRIS). Cadmium (CASRN-7440-43-9) http://www.epa.gov/iris/subst/0141.htm. Accessed 15 May 2018

  • Wang L, Gallagher EP (2013) Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicol Appl Pharmacol 266:177–186

    Article  PubMed  CAS  Google Scholar 

  • Whyte AL, Raumati Hook G, Gail E, Greening GE, Gibbs-Smith E, Gardner JP (2009) Human dietary exposure to heavy metals via the consumption of green shell mussels (Perna canaliculus Gmelin 1791) from the Bay of Islands, northern New Zealand. Sci Total Environ 407:4348–4355

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (2003) Safety evaluation of certain food additives and contaminants. WHO Food Additive Series 52. Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (WHO) (2018) Lead poisoning and health. http://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 15 May 2018

  • Xu J, Sheng L, Yan Z, Hong L (2014) Blood lead and cadmium levels of children: a case study in Changchun, Jilin Province, China. West Indian Med J 63:29–33

    Google Scholar 

  • Yabe J, Nakayama SM, Ikenaka Y, Yohannes YB, Bortey-Sam N, Oroszlany B, Muzandu K, Choongo K, Kabalo AN, Ntapisha J, Mweene A, Umemura T, Ishizuka M (2015) Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 119C:941–947

    Article  CAS  Google Scholar 

  • Young RA (2005) Toxicity Profiles: Toxicity Summary for Cadmium, Risk Assessment Information System. University of Tennessee. https://rais.ornl.gov/tox/profiles/cadmium.html. Accessed 18 May 2018

  • Zhao S, Feng C, Quan W, Chen X, Niu J, Shen Z (2012) Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar Pollut Bull 64(6):1163–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical and financial support provided by members of Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wageh Sobhy Darwish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshdy, A.E.M.A., Darwish, W.S., Daoud, J.R.M. et al. Estimation of metal residues in Oreochromis niloticus and Mugil cephalus intended for human consumption in Egypt: a health risk assessment study with some reduction trials. J Consum Prot Food Saf 14, 81–91 (2019). https://doi.org/10.1007/s00003-018-1198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00003-018-1198-1

Keywords

Navigation