Advertisement

Variability of fat, water and protein content in the flesh of beaked redfish (Sebastes mentella) and Greenland halibut (Reinhardtius hippoglossoides) from artic fishing grounds

  • Horst Karl
  • Jorge Numata
  • Monika Lahrssen-Wiederholt
Research article
  • 69 Downloads

Abstract

Beaked redfish (Sebastes mentella) and Greenland halibut (Reinhardtius hippoglossoides) were collected from fishing grounds of the Barents Sea to study the composition and lipid distribution of the muscle tissue. The belly flaps of beaked redfish showed higher lipid contents (mean 4.6%) compared to anterior dorsal muscle. The protein content was relatively constant in all parts (18–19%). The variation in the muscle lipid composition among individual redfish was greater than the variation among different anatomical locations of the fillets. No significant differences were found in the composition of Greenland halibut muscle parts. The protein content was generally low and ranged between 12.2–13.9%. The lipid content varied considerably between approximately 6 and 17%, displaying large variations of the lipid contents between different Greenland halibut individuals from one catch. The variability of lipid content should be considered in the risk assessment and management of lipophilic contaminants in fish fillets. A correlation between water and lipid content was found for both species (r = −0.8750, beaked redfish; r = −0.8732, Greenland halibut).

Keywords

Proximate composition Muscle tissue Water–lipid correlation Abdominal flaps Lipophilic contaminants 

Notes

Acknowledgements

We would like to thank Dorit Bloch for critically proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Aidos I, van der Padt A, Luten JB, Boom RM (2002) Seasonal changes in crude and lipid composition of herring fillets, byproducts, and respective produced oils. J Agric Food Chem 50:4589–4599CrossRefPubMedGoogle Scholar
  2. Antonacopoulos N (1973) Lebensmittelchemisch-rechtliche Untersuchung und Beurteilung von Fischen und Fischerzeugnissen. In: Ludorff W, Meyer V (eds) Fische und Fischerzeugnisse. Paul Parey, Berlin, p 219Google Scholar
  3. AOAC (Association of Analytical Chemists) (2005) Method #968.06. In: Horwitz W, Latimer G (eds) Official methods of analysis of AOAC international, 18th edn. AOAC International, GaithersburgGoogle Scholar
  4. Borresen T (1992) Quality aspects of wild and reared fish. In: Huss HH, Jacobsen M, Liston J (eds) Quality assurance in the fish industry. Proceedings of an international conference, Copenhagen, Denmark, August 1991. Elsevier, Amsterdam, pp 1–17Google Scholar
  5. Brandes CH, Dietrich R (1956) Untersuchungen über Fett- und Wassergehalt im eßbaren Anteil des Rotbarsches (Sebastes marinus L.). Fette Seifen Anstrichmittel 58(6):433–438CrossRefGoogle Scholar
  6. Commission Regulation (EC) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. Off J Eur Union L 320/18Google Scholar
  7. Commission Regulation (2017) Commission Regulation (EU) 2017/644 of 5 April 2017. Laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 589/2014. Off J Eur Union L 92/9Google Scholar
  8. FAO (1995) Quality and quality changes in fresh fish. In: Huss HH (ed) FAO Fisheries Technical paper 348, RomeGoogle Scholar
  9. Fisch-Informationszentrum e. V. (2016) Fischwirtschaft: Daten und Fakten 2016. Fisch-Informationszentrum e.V., Hamburg. www.fischinfo.de. Accessed 05 Apr 2018
  10. Gristina M, Morizzo G, Bono G, Ragonese S (2006) Biological information on target species: sex-determination, maturation stages and gravimetric indexes. In: MedSudMed. 2006. Report of the workshop on standardization of trawl surveys protocol in the MedSudMed project area. GCP/RER/010/ITA/MSM-TD-04. MedSudMed Technical Documents, vol 4, p 65Google Scholar
  11. Hamre K, Lie Ø, Sandnes K (2003) Seasonal development of nutrient composition, lipid oxidation and colour of fillets from Norwegian spring-spawning herring (Clupea harengus L.). Food Chem 82:441–446CrossRefGoogle Scholar
  12. Havforskningsinstituttet (2018) NIFES seafood data entry for Greenland halibut fillet, dioxins and dl-PCBs in 2008. https://sjomatdata.nifes.no/#seafood/416/2/401. Accessed 22 Feb 2018
  13. Iverson SJ, Frost KJ, Lang SL (2002) Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: factors contributing to among and within species variability. Mar Ecol Prog Ser 241:161–181CrossRefGoogle Scholar
  14. Karl H, Lahrssen-Wiederholt M (2013) Factors influencing the intake of dioxins and dioxin-like PCBs via fish consumption in Germany. J Verbr Lebensm 8:27–35CrossRefGoogle Scholar
  15. Karl H, Bekaert K, Berge J-P, Cadun A, Duflos G, Oehlenschläger J, Poli BM, Tejada M, Testi S, Timm-Heinrich M (2012) WEFTA interlaboratory comparison on total lipid determination in fishery products using the Smedes method. J AOAC Int 95:1–5CrossRefGoogle Scholar
  16. Karl H, Ostermeyer U, Rehbein H, Lehmann I, Manthey-Karl M (2013) Schwankungen von Inhaltsstoffen bei Fischen. Rundschau für Fleischhygiene und Lebensmittelüberwachung 65(4):142–145Google Scholar
  17. Klapper R, Kochmann J, O‘Hara RB, Karl H, Kuhn T (2016) Parasites as biological tags for stock discrimination of beaked redfish (Sebastes mentella): parasite infra-communities vs. limited resolution of cytochrome markers. PLoS ONE 11(4):e0153964CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kolstad K, Vegusdal A, Baeverfjord G, Einen O (2004) Quantification of fat deposits and fat distribution in Atlantic halibut (Hippoglossus hippoglossus L.) using computerized X-ray tomography (CT). Aquaculture 229:255–264CrossRefGoogle Scholar
  19. Lenas DS, Triantafillou DJ, Chatziantoniou S, Nathanailides C (2011) Fatty acid profile of wild and farmed gilthead sea bream (Sparus aurata). J Verbr Lebensmittel 6:435–440CrossRefGoogle Scholar
  20. Leu SS, Jahveri SN, Karakoltsidis PA, Constantinidis SM (1981) Atlantic mackerel (Scomber scombrus, L.): seasonal variation in proximate composition and distribution of chemical nutrients. Food Sci 46(6):1635–1638CrossRefGoogle Scholar
  21. Oehlenschläger J (1992) Rohprotein (N × 6,25)-und wirklicher Proteingehalt von Seefischfilet. Infn Fischw 39(2):89–93Google Scholar
  22. Paz X, Expósito P (2013) Spanish bottom trawl autumn survey Fletan Artico 2013 in the slope of Svalbard Area, ICES division IIb. http://www.fiskeridir.no/content/download/7341/91792/…/130723.pdf. Accessed 11 Sept 2017
  23. Planque B, Kristinsson K, Astakhov A, Bernreuther M, Bethke E, Drevetnyak K et al (2013) Monitoring beaked redfish (Sebastes mentella) in the North Atlantic, current challenges and future prospects. Aquat Living Resour 26:293–306CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2018

Authors and Affiliations

  • Horst Karl
    • 1
  • Jorge Numata
    • 2
  • Monika Lahrssen-Wiederholt
    • 2
  1. 1.Department of Safety and Quality of Milk and Fish ProductsMax Rubner-Institut, German Federal Research Institute of Nutrition and FoodKielGermany
  2. 2.German Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations