Green olive fermentation using spontaneous and Lactobacillus plantarum cultures

  • Andréia Dalla Rosa
  • Sheila Mello da Silveira
  • Enilton Flick Coutinho
  • Clarice Steffens
  • Rogerio Luis Cansian
  • Elisandra Rigo
  • Geciane Toniazzo Backes
Research article


The aim of this work was to evaluate the performance of spontaneous and Lactobacillus cultures in Spanish style fermentation of olive fruits. A fermentation with Lactobacillus plantarum ATCC 8014 was carried out for comparison. Fermentation was performed at room temperature during 120 days in two different concentrations of NaCl (2.4–13.6 % w/v) and sucrose (0–0.82 % w/v) in the brines. The pH, chlorides, lactic acid, reducing sugar and lactic bacteria in selective medium were investigated during the olive fermentation. After 120 days of fermentation, the formulation with 12 % NaCl in the brine hampered the growth of lactic bacteria, avoiding the consumption of reducing sugars. However, low salt concentrations (≤4 %) promoted a decrease in pH, an increase of the lactic acid and the growth of lactic bacteria, providing best environmentally suitable for the fermentation process. Whereas using concentrations of 12 % NaCl and 0.7 % sucrose showed better chemical conditions, ensuring the safety of the product produced. Multivariate analysis showed that the olives with both cultures were in close relation to lactic acid and reducing sugar and different from lactic bacteria.


Lactobacillus plantarum Spontaneous Olive fermentation Salt Sucrose 



The authors thank CNPq, CAPES, FAPERGS, Federal Institute Catarinense, Science and Technology Secretary RS, EMBRAPA Temperate Climate—RS and URI-Erechim for the financial support for this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

3_2016_1034_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)


  1. American Public Health Association (APHA) (2001) Compendium of methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washington, DC, p 1219Google Scholar
  2. Aponte M, Ventorino V, Blaiotta G, Volpe G, Farina V, Avellone G, Moschetti G (2010) Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar
  3. Bautista-Gallego J, Arroyo-López FN, Durán-Quintana MC, Garrido-Fernández A (2010) Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures. Food Microbiol. doi: 10.1016/ Google Scholar
  4. Bautista-Gallego J, Arroyo-López FN, Romero Gil V, Rodríguez Gómez F, García García P, Garrido-Fernández A (2011) Chloride salt mixtures affect Gordal cv. green Spanish-style table olive fermentation. Food Microbiol 28:1316–1325CrossRefPubMedGoogle Scholar
  5. Borcakli M, Özay G, Alperden I (1995) Fermentation of black olives with application of starter culture and aeration. Dev Food Sci 37:1849–1863CrossRefGoogle Scholar
  6. Castro A, Montaño A, Casado F-J, Rejano L (2002) Utilization of Enterococcus casseli flavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol 19:637–644CrossRefGoogle Scholar
  7. Chammem N, Kachouri M, Mejri M, Peres C, Boudabous A, Hamdi M (2005) Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Biores Technol. doi: 10.1016/j.biortech.2004.10.005 Google Scholar
  8. Chorianopoulos NG, Boziaris IS, Stamatiou A, Nychas GJE (2005) Microbial association and acidity development of unheated and pasteurized green-table olives fermented using glucose or sucrose supplements at various levels. Food Microbiol. doi: 10.1016/ Google Scholar
  9. Codex Alimentarius (1981) Norma del Codex para las aceitunas de mesa. Standard for table olives. Stan. 66:1–18Google Scholar
  10. Consejo Oleícola Internacional—IOC (2004) Norma Comercial aplicable a lãs aceitunas de Mesa—Resolución 2/91-IV/04. Accessed 07 Nov
  11. Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G (2012) Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front Microbiol. doi: 10.3389/fmicb.2012.00248 Google Scholar
  12. Cunha SC, Ferreira IMPLO, Fernandes JO, Faria MA, Oliveira PPB, Ferreira MA (2001) Determination of lactic, acetic, succinic, and citric acids in table olives by HPLC/UV. J Liquid Chromat Relat Technol 24:1029–1038CrossRefGoogle Scholar
  13. Durán Quintana MC, Romero Barranco C, García García P, Brenes Balbuena M, Garrido Fernández A (1997) Bacterias del ácido láctico en la fermentación de aceitunas de mesa. Grasas Aceites 48:297–311Google Scholar
  14. Durán Quintana MC, García García P, Garrido Fernánez A (1999) Establishment of conditions for green table olive fermentation at low temperature. Int J Food Microbiol 51:135–143Google Scholar
  15. Garrido-Fernández A, Díez MJF, Adams MR (1997) Table olives: production and processing. Chapman and Hall, London 499 CrossRefGoogle Scholar
  16. Hurtado A, Reguant C, Bordons A, Rozès N (2009) Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar
  17. Hurtado A, Reguant C, Bordons A, Rozès N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar
  18. Hutkins RW (2006) Microbiology and technology of fermented foods. Blackwell Publishing, LondonGoogle Scholar
  19. Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59:1416–1424PubMedPubMedCentralGoogle Scholar
  20. Kailis S, Harris D (2007) Producing table olives. Australia, Landlinks, p 344Google Scholar
  21. Kiai H, Hafidi A (2014) Chemical composition changes in four green olive cultivars during spontaneous fermentation. Food Sci Technol 57:663–670. doi: 10.1016/j.lwt.2014.02.011 Google Scholar
  22. Maldonado MB, Zuritz CA, Assof MV (2008) Diffusion of glucose and sodium chloride in green olives during curing as affected by lye treatment. J Food Eng. doi: 10.1016/j.jfoodeng.2007.04.033 Google Scholar
  23. Marsilio V, Lanza B, Pozzi N (1996) Progress in table olive debittering: degradationin vitro of oleuropein and its derivatives by Lactobacillus plantarum. J Am Oil Chem Soc. doi: 10.1007/BF02518113 Google Scholar
  24. Marsilio V, Campestre C, Lanza B, Angelis M (2001) Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem. doi: 10.1016/S0308-8146(00)00268-5 Google Scholar
  25. Martorana A, Alfonzo A, Settanni L, Corona O, La Croce F, Caruso T, Moschetti G, Francesca N (2015) An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiol 50:126–140CrossRefPubMedGoogle Scholar
  26. Martorana A, Alfonzo A, Settanni L, Corona O, La Croce F, Caruso T, Moschetti G, Francesca N (2016) Effect of the mechanical harvest of drupes on the quality characteristics of green fermented table olives. J Sci Food Agric 96:2004–2017CrossRefPubMedGoogle Scholar
  27. Medina E, Romero C, Castro A, Brenes M, García A (2008) Inhibitors of lactic acid fermentation in Spanish-style green olive brines of the Manzanilla variety. Food Chem. doi: 10.1016/j.foodchem.2008.02.084 PubMedGoogle Scholar
  28. Miller GL (1959) Use of dinitrosalicyclic reagent for determination of reducing sugar. Analy Chem. doi: 10.1021/ac60147a030 Google Scholar
  29. Montaño A, Sánchez AH, Casado FJ, Castro A, Rejano L (2003) Chemical profile of industrially fermented green olives of different varieties. Food Chem. doi: 10.1016/S0308-8146(02)00593-9 Google Scholar
  30. Özay G, Borcakli M (1995) Effect of brine replacement and salt concentration on the fermentation of naturally black olives. Food Res Int. doi: 10.1016/0963-9969(95)00054-2 Google Scholar
  31. Panagou EZ, Schillinger U, Franz CMAP, Nychas GJE (2008) Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar
  32. Poiana M, Romeo FV (2006) Changes in chemical and microbiological parameters of some varieties of Sicily olives during natural fermentation. Grasas Aceites. doi: 10.3989/gya.2006.v57.i4.66 Google Scholar
  33. Randazzo CL, Fava G, Tomaselli F, Romeo FV, Pennino G, Vitello E, Caggia C (2011) Effect of kaolin and copper based products and of starter cultures on green table olive fermentation. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar
  34. Rodríguez H, Curiel JA, Landete JM, Rivas B, Felipe FL, Gómez-Cordovés C, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol. doi: 10.1016/j.ijfoodmicro.2009.03.025 Google Scholar
  35. Romeo FV, Piscopo A, Poiana M (2010) Effect of acidification and salt concentration on two black brined olives from Sicily (c v moresca and giarraffa). Grasas Aceites 61:251–260CrossRefGoogle Scholar
  36. Romeo FV, Piscopo A, Mincione A, Poiana M (2012) Quality evaluation of different typical table olive preparations (cv Nocellara del Belice). Grasas Aceites 61:19–25CrossRefGoogle Scholar
  37. Ruiz-Barba JL, Jiménez-Díaz R (2012) A novel Lactobacillus pentosus-paired starter culture for Spanish-style green olive fermentation. Food Microbiol. doi: 10.1016/ Google Scholar
  38. Tassou CC, Panagou EZE, Katsaboxakis KZ (2002) Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol 19:605–615CrossRefGoogle Scholar
  39. Tsapatsaris S, Kotzekidou P (2004) Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int J Food Microbiol. doi: 10.1016/j.ijfoodmicro.2004.02.011 PubMedGoogle Scholar
  40. Zago M, Lanza B, Rossetti L, Muzzalupo I, Carminati D, Giraffa G (2013) Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: oleuropeinase activity and phage sensitivity. Food Microbiol. doi: 10.1016/ PubMedGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2016

Authors and Affiliations

  • Andréia Dalla Rosa
    • 1
    • 2
  • Sheila Mello da Silveira
    • 2
  • Enilton Flick Coutinho
    • 4
  • Clarice Steffens
    • 1
  • Rogerio Luis Cansian
    • 1
  • Elisandra Rigo
    • 1
    • 3
  • Geciane Toniazzo Backes
    • 1
  1. 1.Department of Food EngineeringURI ErechimErechimBrazil
  2. 2.Center of Science and Food Technology of the Federal Institute CatarinenseConcórdiaBrazil
  3. 3.Department of Food EngineeringUDESCPinhalzinhoBrazil
  4. 4.Embrapa Temperate ClimatePelotasBrazil

Personalised recommendations