Advertisement

The prevalence and molecular typing of Clostridium perfringens in ground beef and sheep meats

  • Husnu Sahan Guran
  • Aydın Vural
  • Mehmet Emin Erkan
Research article

Abstract

This study was aimed at the investigation of the prevalence of Clostridium perfringens in ground beef and sheep meats and to detect the cpa, cpb, etx, iA, cpe and cpb2 toxin genes by multiplex PCR. Obtained from retail markets and butchers, 100 ground meat samples, 50 of which were beef and 50 of which were sheep meat samples, were examined. Out of the 50 ground beef samples 48 (96 %) and out of the 50 ground sheep meat samples 44 (88 %) were contaminated with C. perfringens. According to microscopic examination and the results of biochemical tests, 262 positive isolates obtained from these samples were identified as C. perfringens. Multiplex PCR results demonstrated that, out of the 262 isolates, 203 (77.4 %) possessed only the cpa gene (type A), while 20 (7.6 %) carried the cpa and cpb2 toxin genes (type A-cpb2), and 6 (2.2 %) the cpa and cpe toxin genes (type A-cpe). Furthermore, it was determined that, out of the 262 C. perfringens isolates, 4 (1.5 %), 10 (3.8 %) and 19 (7.2 %) were of the types B, C and D, respectively.

Keywords

C. perfringens Ground meat Prevalence Toxin genes Multiplex PCR 

Notes

Acknowledgments

The present study was supported by the Dicle University Research Fund (DUBAP/10-VF-83). We thank Şenay Erçelik and Zülküf Emre Papatya for their excellent laboratory assistance.

References

  1. Albini S, Brodard I, Jaussi A, Wollschlaeger N, Frey J, Miserez R, Abril C (2008) Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet Microbiol 127:179–185PubMedCrossRefGoogle Scholar
  2. Ali MS, Fung DYC (1991) Occurrence of Clostridium perfringens in ground beef and ground turkey evaluated by three methods. J Food Saf 11:197–203CrossRefGoogle Scholar
  3. Al-Khaldi SF, Myers KM, Rasooly A, Chizhikov V (2004) Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol Cell Probes 18:359–367PubMedCrossRefGoogle Scholar
  4. Atwa EI, Abou El-Roos AN (2011) Incidence of Clostridium perfringens in meat products at some Egyptian governorates. Int J Microbiol Res 2:196–203Google Scholar
  5. Baums CG, Schotte U, Amtsberg G, Goethe R (2004) Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol 100:11–16PubMedCrossRefGoogle Scholar
  6. Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA (1998) Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66:4531–4536PubMedCentralPubMedGoogle Scholar
  7. Brynestad S, Granum PE (2002) Clostridium perfringens and foodborne infections. Int J Food Microbiol 74:195–202PubMedCrossRefGoogle Scholar
  8. Çakmak Ö (2001) Ankara’da tüketime sunulan sığır kıymalarında C. perfringens’in varlığı ve kontaminasyon düzeyinin belirlenmesi. Yüksek Lisans tezi, Ankara Üniversitesi, AnkaraGoogle Scholar
  9. Çakmak Ö, Bilir Ormancı S, Tayfur M, Erol I (2006) Presence and contamination level of Clostridium perfringens in raw frozen ground poultry and poultry burgers. Turk J Vet Anim Sci 30:101–105Google Scholar
  10. Erol I, Goncuoglu M, Ayaz ND, Bilir Ormanci FS, Hildebrandt G (2008) Molecular typing of Clostridium perfringens isolated from turkey meat by multiplex PCR. Lett Appl Microbiol 47:31–34PubMedCrossRefGoogle Scholar
  11. Fach P, Popoff MR (1997) Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide latex agglutination test. Appl Environ Microbiol 63:4232–4236PubMedCentralPubMedGoogle Scholar
  12. Fisher DJ (2006) Clostridium perfringens beta2 toxin: a potential accessory toxin in gastrointestinal diseases of humans and domestic animals. University of Pittsburgh School of Medicine, PittsburghGoogle Scholar
  13. Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA (2005) Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol 56:747–762PubMedCrossRefGoogle Scholar
  14. Garmory HS, Chanter N, French NP, Bueschel D, Songer JG, Titball RW (2000) Occurrence of Clostridium perfringens β2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol Infect 124:61–67PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gibert M, Jolivet-Renaud C, Popoff MR (1997) Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203:65–73PubMedCrossRefGoogle Scholar
  16. Gökçe Hİ, Genç O, Sözmen M, Gökçe G (2007) Determination of Clostridium perfringens toxins types in sheeps with suspected enterotoxemia in Kars province. Turk J Vet Anim Sci 31:355–360Google Scholar
  17. Guang-Hua W, Xiao-Ling Q (1994) The incidence of C perfringens, S. aureus salmonella and L. monocytogenes in retail meat and meat products in Beijing. Fleischwirtsch 74:288–290Google Scholar
  18. Guran HS, Oksuztepe G (2013) Detection and typing of Clostridium perfringens from retail chicken meat parts. Lett Appl Microbiol 57:77–82PubMedCrossRefGoogle Scholar
  19. Heikinheimo A, Korkeala H (2005) Multiplex PCR assay for toxinotyping Clostridium perfringens isolates obtained from Finnish broiler chickens. Lett Appl Microbiol 40:407–411PubMedCrossRefGoogle Scholar
  20. Johansson A, Aspan A, Bagge E, Båverud V, Engström BE, Johansson KE (2006) Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge. BMC Microbiol 6:47PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kalender H, Kılıç A, Atıl E (2007) Enterotoxemia in a cow due to Clostridium perfringens type A. Turk J Vet Anim Sci 31:83–84Google Scholar
  22. Kamber U, Gokce HI, Elmali M (2007) Clostridium perfringens and its toxins in minced meat from Kars, Turkey. Food Addit Contam 24:673–678PubMedCrossRefGoogle Scholar
  23. Koç R, Gökçe Hİ (2007) Determination of the toxins and biotypes of C. perfringens in diarrhoeic calves in the Kars district of Turkey. Turk J Vet Anim Sci 31:207–211Google Scholar
  24. Kokai-Kun JF, McClane BA (1997) Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis 25:S165–S167Google Scholar
  25. Krause P, Schmoldt R, Tolgay Z, Yurtyerg A (1972) Mikrobiologische und serologische Untersuchungen an Lebensmitteln in der Türkei. Fleischerei 1:83–86Google Scholar
  26. Lindström M, Heikinheimo A, Lahti P, Korkeala H (2011) Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 28:192–198PubMedCrossRefGoogle Scholar
  27. Lynch M, Painter J, Woodruff R, Braden C (2006) Surveillance for foodborne-disease outbreaks—United States, 1998–2002. Morbid Mortal Wkly Rep 10:1–34Google Scholar
  28. Meer RR, Songer JG (1997) Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. Am J Vet Res 58:702–705PubMedGoogle Scholar
  29. Miki Y, Miyamoto K, Kaneko-Hirano I, Fujiuchi K, Akimoto S (2008) Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl Environ Microbiol 74:5366–5372PubMedCentralPubMedCrossRefGoogle Scholar
  30. Miwa N, Nishina T, Kubo S, Honda H (1997) Most probable numbers of enterotoxigenic Clostridium perfringens in intestinal contents of domestic livestock detected by nested PCR. J Vet Med Sci 59:557–560PubMedCrossRefGoogle Scholar
  31. Nordic committee on food analysis (2009) Clostridium perfringens. Determination in foods, feed and environmental samples. Method no. 95, 5th edn, OsloGoogle Scholar
  32. Özcan C, Gürçay M (2000) Elazığ ve çevresinde 1994–1998 yılları arasında küçük ruminantlarda enterotoksemi insidensi. Turk J Vet Anim Sci 24:283–286Google Scholar
  33. Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7:104–110PubMedCrossRefGoogle Scholar
  34. Phillips D, Jordan D, Morris S, Jenson I, Sumner J (2006) A national survey of the microbiological quality of beef carcasses and frozen boneless beef in Australia. J Food Prot 69:1113–1117PubMedGoogle Scholar
  35. Sancak YC, Boynukara B, Ağaoğlu S (1993) Van’da tüketime sunulan kıymaların mikrobiyolojik kalitesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 44:73–86Google Scholar
  36. Sarıgüzel D (2005) Ankara‘da tüketime sunulan hindi kıymalarında Clostridium perfringens‘in varlığı ve elde edilen izolatlarda cpe geninin saptanması. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Yüksek Lisans TeziGoogle Scholar
  37. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15PubMedCentralPubMedCrossRefGoogle Scholar
  38. Schalch B, Eisgruber H, Geppert P, Stolle A (1996) Vergleich von vier Routineverfahren zur Bestaetigung von Clostridium perfringens aus Lebensmitteln. Arch Lebensmittelhyg 47:27–30Google Scholar
  39. Seyitoğlu Ş, Cengiz Ş, Altun KS, Küçükkalem ÖF, Söztutmaz İ (2012) Investigation of Clostridium perfringens toxins in sheeps in the region of Erzurum by toxin neutralization, ELISA and lateks agglütination tests. J Etlik Vet Microbiol 23:39–43Google Scholar
  40. Smedley JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA (2004) The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 152:183–204PubMedCrossRefGoogle Scholar
  41. Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216–234PubMedCentralPubMedGoogle Scholar
  42. SPSS (2003) SPSS statistical package, version 14.01. ChicagoGoogle Scholar
  43. Stagnitta PV, Micalizzi B, De Guzmán AMS (2002) Prevalence of enterotoxigenic Clostridium perfringens in meats in San Luis, Argentina. Anaerobe 8:253–258CrossRefGoogle Scholar
  44. Tooloei M, Masodei MH (2008) The distribution and prevalence rate of enterotoxaemia in sheep in East Azerbaijan Iran in spring. J Anim Vet Adv 7:1434–1439Google Scholar
  45. Turkey Central Research Institute for Field Crop (2013). http://www.tarlabitkileri.gov.tr/gis_web/bultenler/2013_1.pdf. Accessed 29 Dec 2013
  46. United Kingdom Food Standards Agency (2010) A UK-wide survey of microbiological contamination of fresh red meats on retail sale. http://www.food.gov.uk/multimedia/pdfs/fsis0110redmeat.pdf. Accessed 25 June 2013
  47. Uzal FA (2004) Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe 10:135–143PubMedCrossRefGoogle Scholar
  48. Wahl E, Rømma S, Granum PE (2013) A Clostridium perfringens outbreak traced to temperature-abused beef stew, Norway, 2012. Eurosurveillance 18:28Google Scholar
  49. Wen Q, McClane BA (2004) Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl Environ Microbiol 70:2685–2691PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2014

Authors and Affiliations

  • Husnu Sahan Guran
    • 1
  • Aydın Vural
    • 1
  • Mehmet Emin Erkan
    • 1
  1. 1.Department of Food Hygiene and Technology, Faculty of Veterinary MedicineDicle UniversityDiyarbakirTurkey

Personalised recommendations