Self-oscillations on a partially wetted catalyst pellet in α-methylstyrene hydrogenation: Experiment and mathematical modeling

  • V. A. Kirillov
  • I. V. Koptyug
  • A. V. Kulikov
  • N. A. Kuzin
  • A. A. Lysova
  • A. B. Shigarov
  • V. N. Parmon


Self-oscillation modes on an irrigated porous catalyst pellet in exothermic hydrogenation accompanied by liquid evaporation is studied. By NMR tomography (magnetic resonance microimaging), images of the liquid-phase distribution within the porous object are obtained and the liquid-phase redistribution is monitored immediately during the process without destroying the object and without introducing any probes or molecular labels.


Hydrogenation Evaporation Mathematical Modeling Liquid Evaporation Porous Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watson, P.C. and Harold, M.P., Dynamic Effects of Vaporization with Exothermic Reaction in a Porous Catalytic Pellet, AIChE J., 1993, vol. 39, pp. 989–1006.Google Scholar
  2. 2.
    Watson, P.C. and Harold, M.P., Rate Enhancement and Multiplicity in a Partially Wetted and Filled Pellet: Experimental Study, AIChE J., 1994, vol. 40, p. 97.Google Scholar
  3. 3.
    Kulikov, A.V., Kuzin, N.A., Shigarov, A.B., Kirillov, V.A., Kronberg, A.E., and Westerterp, K.R., Experimental Study of Vaporization Effect on Steady State and Dynamic Behavior of Catalytic Pellets, Catal. Today, 2001, vol. 66, pp. 255–262.Google Scholar
  4. 4.
    Shigarov, A.B., Kulikov, A.V., Kuzin, N.A., and Kirillov, V.A., Modeling of Critical Phenomena for Liquid/Vapor—Gas Exothermic Reaction on a Single Catalyst Pellet, Chem. Eng. J., 2003, vol. 91, nos. 2–3, pp. 205–213.Google Scholar
  5. 5.
    Kirillov, V.A., Mikhailova, I.A., Fadeev, S.I., and Korolev, V.K., Study of Critical Phenomena in an Exothermic Reaction on a Partially Wetted Porous Catalyst Pellet, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 5, pp. 22–32.Google Scholar
  6. 6.
    Kirillov, V.A., Kuzin, N.A., Gavrilin, V.N., and Kuz’min, V.A., Observed Rate of a Chemical Reaction Accompanied by Phase Transitions on the Surface of a Heterogeneous Catalyst, Kinet. Katal., 1995, vol. 36, no. 4, pp. 1–6.Google Scholar
  7. 7.
    Callaghan, P.T., Principles of Nuclear Magnetic Resonance Microscopy, Oxford: Clarendon, 1991.Google Scholar
  8. 8.
    Kuhn, W., NMR Microscopy—Fundamentals, Limits and Possible Applications, Angew. Chem., Int. Ed. Engl., 1990, vol. 29, pp. 1–19.Google Scholar
  9. 9.
    Talagala, S.L. and Lowe, I.J., Introduction to Magnetic Resonance Imaging, Concepts Magn. Reson., 1991, vol. 3, pp. 145–159.Google Scholar
  10. 10.
    Koptyug, I.V., Il’ina, L. Yu., and Matveev, A.V., Use of NMR Microtomography for Solving Topical Problems of Catalysis, Khim. Fiz., 2002, vol. 21, pp. 68–78.Google Scholar
  11. 11.
    Koptyug, I.V., Sagdeev, R.Z., Khitrina, L. Yu., and Parmon, V.N., A Nuclear Magnetic Resonance Microscopy Study of Mass Transport in Porous Materials, Appl. Magn. Reson., 2000, vol. 18, pp. 13–28.Google Scholar
  12. 12.
    Koptyug, I.V., Kulikov, A.V., Lysova, A.A., Parmon, V.N., and Sagdev, R.Z., NMR Imaging of the Distribution of the Liquid Phase in a Catalyst Pellet During α-Methylstyrene Evaporation, J. Am. Chem. Soc., 2002, vol. 124, pp. 9684–9685.CrossRefGoogle Scholar
  13. 13.
    Gladen, L.F., Lim, M.H.M., Mantle, M.D., Sederman, A.J., and Stitt, E.H., MRI Visualization of Two-Phase Flow in Structured Support and Trickle-Bed Reactors, Catal. Today, 2003, vols. 79–80, pp. 203–210.Google Scholar
  14. 14.
    Funk, G.A., Harold, M.P., and Ng, K.M., A Novel Model for Reaction in Trickle-Bed with Flow Maldistribution, Ind. Eng. Chem. Res., 1990, vol. 29, p. 738.Google Scholar
  15. 15.
    El-Hisnavi, A.A., Dudukovic, M.P., and Mills, P.L., Trickle-Bed Reactor: Dynamic Tracer Tests, Reaction in Studies and Modeling Reactor Performance, Am. Chem. Soc. Symp. Ser., 1982, vol. 196, pp. 421–440.Google Scholar
  16. 16.
    Germain, A.H., Levebvre, A.G., and L’Homme, G.A., Experimental Study of Catalytic Trickle Bed Reactor, Adv. Chem. Ser., 1974, vol. 133, p. 164.Google Scholar
  17. 17.
    Turek, F. and Lange, R., Mass Transfer in Trickle-Bed Reactors at Low Reynolds Number, Chem. Eng. Sci., 1981, vol. 36, pp. 573–579.Google Scholar
  18. 18.
    Kadilkar, M.R., Wu, Y.X., Al-Dahhan, M.H., and Dudukovic, M.P., Comparison of Trickle-Bed and Upflow Reactor Performance at High Pressure: Model Predictions and Experimental Observations, Chem. Eng. Sci., 1996, vol. 51, no. 10, pp. 2139–2148.Google Scholar
  19. 19.
    Ahn, B.J., Smith, J.M., and McCoy, B.J., Dynamic Hydrogenation Studies in a Catalytic Slurry Reactor, AIChE J., 1986, vol. 32, no. 4, pp. 566–574.Google Scholar
  20. 20.
    Cini, P. and Harold, M.P., Experimental Study of the Tubular Multiphase Catalyst, AIChE J., 1991, vol. 37, p. 997.Google Scholar
  21. 21.
    Koptyug, I.V. and Sagdeev, R.Z., Non-Traditional Applications of NMR Tomography, Usp. Khim., 2003, vol. 72, no. 2, pp. 183–212 [Russ. Chem. Rev. (Engl. Transl.), vol. 72, no. 2, pp. 165–191].Google Scholar
  22. 22.
    Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Gases and Liquids, New York: McGraw-Hill, 1987.Google Scholar
  23. 23.
    Hughmark, G.A., Mass and Heat Transfer from Rigid Spheres, AIChE J., 1967, vol. 3, p. 1219.Google Scholar
  24. 24.
    Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Theory of Oscillations), Moscow: Nauka, 1981.Google Scholar
  25. 25.
    Godunov, S.K. and Ryaben’kii, V.S., Raznostnye skhemy (Finite-Difference Schemes), Moscow: Nauka, 1977.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. A. Kirillov
    • 1
  • I. V. Koptyug
    • 2
  • A. V. Kulikov
    • 1
  • N. A. Kuzin
    • 1
  • A. A. Lysova
    • 2
    • 3
  • A. B. Shigarov
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.International Tomographic Center, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations