Advertisement

Theoretical and Mathematical Physics

, Volume 142, Issue 2, pp 197–210 | Cite as

Nonanticommutative deformations of N=(1, 1) supersymmetric theories

  • E. A. Ivanov
  • B. M. Zupnik
Article
  • 29 Downloads

Abstract

We discuss chirality-preserving nilpotent deformations of the four-dimensional N=(1, 1) Euclidean harmonic superspace and their implications in N=(1, 1) supersymmetric gauge and hypermultiplet theories. For the SO(4) × SU(2)-invariant deformation, we present nonanticommutative Euclidean analogues of the N=2 gauge multiplet and hypermultiplet off-shell actions.As a new result, we consider a specific nonanticommutative hypermultiplet model with the N=(1, 0) supersymmetry.It involves free scalar fields and interacting right-handed spinor fields.

Keywords

nilpotent deformations harmonic superspaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Seiberg and E. Witten, JHEP, 9909, 032 (1999); hep-th/9908142 (1999); M. R. Douglas and N. A. Nekrasov, Rev. Modern Phys., 73, 977 (2001); hep-th/0106048 (2001).Google Scholar
  2. 2.
    S. Ferrara and M. A. Lled’o, JHEP, 0005, 008 (2000); hep-th/0002084 (2000); D. Klemm, S. Penati, and L. Tamassia, Class. Q. Grav., 20, 2905 (2003); hep-th/0104190 (2001).Google Scholar
  3. 3.
    I. L. Buchbinder and I. B. Samsonov, Gravit. Cosmology, 8, 17 (2002); hep-th/0109130 (2001).Google Scholar
  4. 4.
    A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, Class. Q. Grav., 1, 469 (1984).Google Scholar
  5. 5.
    A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge (2001).Google Scholar
  6. 6.
    N. Seiberg, JHEP, 0306, 010 (2003); hep-th/0305248 (2003).Google Scholar
  7. 7.
    L. Brink and J. H. Schwarz, Phys. Lett. B, 100, 310 (1981); H. Ooguri and C. Vafa, Adv. Theor. Math. Phys., 7, 53, 405 (2003); hep-th/0302109, hep-th/0303063 (2003); N. Berkovits and N. Seiberg, JHEP, 0307, 010 (2003); hep-th/0306226 (2003); J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen, Phys. Lett. B, 574, 98 (2003); hep-th/0302078 (2003).Google Scholar
  8. 8.
    S. Ferrara, M. A. Lled’o, and O. Maci’a, JHEP, 0309, 068 (2003); hep-th/0307039 (2003).Google Scholar
  9. 9.
    E. Ivanov, O. Lechtenfeld, and B. Zupnik, JHEP, 0402, 012 (2004); hep-th/0308012 (2003).Google Scholar
  10. 10.
    S. Ferrara and E. Sokatchev, Phys. Lett. B, 579, 226 (2004); hep-th/0308021 (2003).Google Scholar
  11. 11.
    S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B. Zupnik, Nucl. Phys. B, 704, 154 (2005); hepth/ 0405049 (2004).Google Scholar
  12. 12.
    T. Araki, K. Ito, and A. Ohtsuka, JHEP, 0401, 046 (2004); hep-th/0401012 (2004).Google Scholar
  13. 13.
    T. Araki and K. Ito, Phys. Lett. B, 595, 513 (2004); hep-th/0404250 (2004).Google Scholar
  14. 14.
    B. Zumino, Phys. Lett. B, 69, 369 (1977).Google Scholar
  15. 15.
    Yu. I. Manin, Gauge Field Theory and Complex Geometry, Springer, Berlin (1987).Google Scholar
  16. 16.
    S. V. Ketov and S. Sasaki, Phys. Lett. B, 595, 530 (2004); hep-th/0404119 (2004).Google Scholar
  17. 17.
    B. M. Zupnik, Phys. Lett. B, 183, 175 (1987).Google Scholar
  18. 18.
    Ch. Devchand and V. Ogievetsky, Nucl. Phys. B, 414, 763 (1994); hep-th/9306163 (1993); B. M. Zupnik, Theor. Math. Phys., 130, 213 (2002); hep-th/0107012 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. A. Ivanov
    • 1
  • B. M. Zupnik
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchMoscow OblastRussia

Personalised recommendations