Skip to main content
Log in

Cathode of a Hydrogen-Oxygen fuel cell with a solid polymer electrolyte: The effect of the flooding of pores by water on the characteristics of the active layer

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A computer model of the active layer of the cathode of a hydrogen-oxygen fuel cell with a solid polymer electrolyte is studied. The active mass of the electrode consists of equidimensional grains of the substrate (agglomerates of carbon particles with platinum particles embedded in them) and a solid polymer electrolyte (Nafion). The flooding by water can be experienced by both the pores in the substrate grains, which facilitate the oxygen penetration into the active layer of the electrode, and the voids between the grains. All possible versions of the flooding of these pores by water are considered. A calculation of the optimum, at a given polarization of the electrode, value of electrochemical activity, the thickness of the active layer, and the weight of platinum is performed. The major parameters of the system are the concentrations of grains of the substrate and solid polymer electrolyte, the size of these grains, the platinum concentration in the substrate grains, the average diameter of pores in the substrate grains, and the polarization of electrodes. The ultimate aim of the work is to estimate how the flooding of pores of the active layer of the cathode by water affects the magnitude of the optimum current, the effective thickness of the active layer, and the weight of platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Test Reports BU#1 and BU#2, General Electric Co., TRP-76, 1980.

  2. Raistrick, I.D., US Patent 4876115, 1989; Proc. Symp. Diaphragms, Separators, Ion Exchange Membranes, Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., 1986, p. 172.

  3. Lemons, R., J. Power Sources, 1990, vol. 29, p. 251.

    Google Scholar 

  4. Timonov, A.M., Sorosov. Obrazov. Zh., 2000, no. 8, p. 69.

  5. Berezina, N.P., Sorosov. Obrazov. Zh., 2000, no. 9, p. 37.

  6. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 1036.

    Google Scholar 

  7. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 197.

    Google Scholar 

  8. LaConti, A.B., Fragala, A.R., and Boyack, J.R., Electrodes Materials and Processes for Energy Conversion and Storage, McIntyre, J.D.E., Srinivasan, S., and Will, F.G., Eds., 1977, p. 354.

  9. Eisman, G.A., Diaphragms, Separators, and Ion Exchange Membranes, Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., 1986, p. 156.

  10. Verbrugge, M. and Hill, R., J. Phys. Chem., 1988, vol. 92, p. 6778.

    Google Scholar 

  11. Verbrugge, M., J. Electrochem. Soc., 1989, vol. 136, p. 417.

    Google Scholar 

  12. Hill, R. and Verbrugge, M., J. Electrochem. Soc., 1990, vol. 137, pp. 886, 893.

    Google Scholar 

  13. Zawodzinski, T.A., Neeman, M., Sillerud, L.D., and Gottesfeld, S., J. Phys. Chem., 1991, vol. 95, p. 6040.

    Google Scholar 

  14. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.

    Google Scholar 

  15. Zawodzinski, T.A., Jr., Gottesfeld, S., Shoichet, M.S., and McCarty, T.J., J. Appl. Electrochem., 1993, vol. 23, p. 86.

    Google Scholar 

  16. Zawodzinski, T.A., Springer, T.E., Uribe, F.A., and Gottesfeld, S., Solid State Ionics, 1993, vol. 60, p. 199.

    Google Scholar 

  17. Zawodzinski, T.A., Derouin, C., Springer, T.E., and Gottesfeld, S., Solid State Ionics, 1993, vol. 60, p. 199.

    Google Scholar 

  18. Zawodzinski, T.A., Springer, T.E., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1981.

    Google Scholar 

  19. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 811.

    Google Scholar 

  20. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 1476.

    Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 34.

    Google Scholar 

  22. Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1965.

    Google Scholar 

  23. Uchida, M., Aoyama, Y., Eda, N., and Akira, Ohta., J. Electrochem. Soc., 1995, vol. 142, p. 4143.

    Google Scholar 

  24. Escribano, S. and Aldebert, P., Solid State Ionics, 1995, vol. 77, p. 318.

    Google Scholar 

  25. Bolwin, K., Gulzow, E., Bevers, D., and Schnurnberger, W., Solid State Ionics, 1995, vol. 77, p. 324.

    Google Scholar 

  26. Wilson, M.S., Valerio, J.A., and Gottesfeld, S., Electrochim. Acta, 1995, vol. 40, p. 355.

    Google Scholar 

  27. Mehta, V. and Cooper, J.S., J. Power Sources, 2003, vol. 114, p. 32.

    Google Scholar 

  28. Eikerling, M. and Kornyshev, A.A., J. Electroanal. Chem., 1998, vol. 453, p. 89.

    Google Scholar 

  29. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, pp. 242, 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Translated from Elektrokhimiya, Vol. 41, No. 1, 2005, pp. 35–47.

Original Russian Text Copyright © 2005 by Chirkov, Rostokin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Cathode of a Hydrogen-Oxygen fuel cell with a solid polymer electrolyte: The effect of the flooding of pores by water on the characteristics of the active layer. Russ J Electrochem 41, 32–43 (2005). https://doi.org/10.1007/PL00022098

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00022098

Key words

Navigation