Advertisement

Russian Journal of Electrochemistry

, Volume 41, Issue 1, pp 32–43 | Cite as

Cathode of a Hydrogen-Oxygen fuel cell with a solid polymer electrolyte: The effect of the flooding of pores by water on the characteristics of the active layer

  • Yu. G. Chirkov
  • V. I. Rostokin
Article
  • 22 Downloads

Abstract

A computer model of the active layer of the cathode of a hydrogen-oxygen fuel cell with a solid polymer electrolyte is studied. The active mass of the electrode consists of equidimensional grains of the substrate (agglomerates of carbon particles with platinum particles embedded in them) and a solid polymer electrolyte (Nafion). The flooding by water can be experienced by both the pores in the substrate grains, which facilitate the oxygen penetration into the active layer of the electrode, and the voids between the grains. All possible versions of the flooding of these pores by water are considered. A calculation of the optimum, at a given polarization of the electrode, value of electrochemical activity, the thickness of the active layer, and the weight of platinum is performed. The major parameters of the system are the concentrations of grains of the substrate and solid polymer electrolyte, the size of these grains, the platinum concentration in the substrate grains, the average diameter of pores in the substrate grains, and the polarization of electrodes. The ultimate aim of the work is to estimate how the flooding of pores of the active layer of the cathode by water affects the magnitude of the optimum current, the effective thickness of the active layer, and the weight of platinum.

Key words

hydrogen-oxygen fuel cell with a solid polymer electrolyte oxygen electrode weight of platinum computer-aided simulation of porous electrodes Knudsen flow Nafion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Test Reports BU#1 and BU#2, General Electric Co., TRP-76, 1980.Google Scholar
  2. 2.
    Raistrick, I.D., US Patent 4876115, 1989; Proc. Symp. Diaphragms, Separators, Ion Exchange Membranes, Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., 1986, p. 172.Google Scholar
  3. 3.
    Lemons, R., J. Power Sources, 1990, vol. 29, p. 251.Google Scholar
  4. 4.
    Timonov, A.M., Sorosov. Obrazov. Zh., 2000, no. 8, p. 69.Google Scholar
  5. 5.
    Berezina, N.P., Sorosov. Obrazov. Zh., 2000, no. 9, p. 37.Google Scholar
  6. 6.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 1036.Google Scholar
  7. 7.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 197.Google Scholar
  8. 8.
    LaConti, A.B., Fragala, A.R., and Boyack, J.R., Electrodes Materials and Processes for Energy Conversion and Storage, McIntyre, J.D.E., Srinivasan, S., and Will, F.G., Eds., 1977, p. 354.Google Scholar
  9. 9.
    Eisman, G.A., Diaphragms, Separators, and Ion Exchange Membranes, Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., 1986, p. 156.Google Scholar
  10. 10.
    Verbrugge, M. and Hill, R., J. Phys. Chem., 1988, vol. 92, p. 6778.Google Scholar
  11. 11.
    Verbrugge, M., J. Electrochem. Soc., 1989, vol. 136, p. 417.Google Scholar
  12. 12.
    Hill, R. and Verbrugge, M., J. Electrochem. Soc., 1990, vol. 137, pp. 886, 893.Google Scholar
  13. 13.
    Zawodzinski, T.A., Neeman, M., Sillerud, L.D., and Gottesfeld, S., J. Phys. Chem., 1991, vol. 95, p. 6040.Google Scholar
  14. 14.
    Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.Google Scholar
  15. 15.
    Zawodzinski, T.A., Jr., Gottesfeld, S., Shoichet, M.S., and McCarty, T.J., J. Appl. Electrochem., 1993, vol. 23, p. 86.Google Scholar
  16. 16.
    Zawodzinski, T.A., Springer, T.E., Uribe, F.A., and Gottesfeld, S., Solid State Ionics, 1993, vol. 60, p. 199.Google Scholar
  17. 17.
    Zawodzinski, T.A., Derouin, C., Springer, T.E., and Gottesfeld, S., Solid State Ionics, 1993, vol. 60, p. 199.Google Scholar
  18. 18.
    Zawodzinski, T.A., Springer, T.E., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1981.Google Scholar
  19. 19.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 811.Google Scholar
  20. 20.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 1476.Google Scholar
  21. 21.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 34.Google Scholar
  22. 22.
    Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1965.Google Scholar
  23. 23.
    Uchida, M., Aoyama, Y., Eda, N., and Akira, Ohta., J. Electrochem. Soc., 1995, vol. 142, p. 4143.Google Scholar
  24. 24.
    Escribano, S. and Aldebert, P., Solid State Ionics, 1995, vol. 77, p. 318.Google Scholar
  25. 25.
    Bolwin, K., Gulzow, E., Bevers, D., and Schnurnberger, W., Solid State Ionics, 1995, vol. 77, p. 324.Google Scholar
  26. 26.
    Wilson, M.S., Valerio, J.A., and Gottesfeld, S., Electrochim. Acta, 1995, vol. 40, p. 355.Google Scholar
  27. 27.
    Mehta, V. and Cooper, J.S., J. Power Sources, 2003, vol. 114, p. 32.Google Scholar
  28. 28.
    Eikerling, M. and Kornyshev, A.A., J. Electroanal. Chem., 1998, vol. 453, p. 89.Google Scholar
  29. 29.
    Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, pp. 242, 253.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Engineering PhysicsMoscowRussia

Personalised recommendations