Neuroscience and Behavioral Physiology

, Volume 35, Issue 3, pp 235–252 | Cite as

A model of attention and memory based on the principle of the dominant and the comparator function of the hippocampus

  • V. I. Kryukov


The six major questions of attention are described in terms of the dominant, as defined by Ukhtomskii. The dominant was in turn simulated as a systems manifestation of phase transitions in the brain. The theoretical and experimental bases for the existence of metastable states in the brain are reviewed, these states having lifetimes of 1 sec and more. This approach simultaneously provides solutions for all the major questions of attention and the “central controller.” A neurobiological model of attention and memory is proposed, based on the systems properties of Ukhtomskii’s dominant and the comparator function of the hippocampus as described by Vinogradova. New published data are presented to support the existence of an information processing system in the brain in which the hippocampus plays the central role.


attention the Ukhtomskii dominant long-term memory the oscillator model of neural networks phase transitions in the brain comparator function of the hippocampus septo-hippocampal system phase-frequency control system. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Borisyuk, R. M. Borisyuk, Ya. B. Kazanovich, et al., “Model of the dynamics of neuron activity during information processing by the brain,” Usp. Fizich. Nauk., 172, No. 10, 1189–1214 (2002).Google Scholar
  2. 2.
    O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).Google Scholar
  3. 3.
    N. V. Golikov, “The question of local and disseminated excitation in contemporary neurophysiology,”in: Mechanisms of Local Reactions and Propagating Excitation [in Russian], Nauka, Leningrad (1970), pp. 5–12.Google Scholar
  4. 4.
    V. F. Kichigina, “Mechanisms of the regulation and functional importance of the theta rhythm: the role of the serotoninergic and noradrenergic systems,” Zh. Vyssh. Nerv. Deyat., 52, No. 2, 195–204 (2002).Google Scholar
  5. 5.
    V. I. Kryukov, G. N. Borisyuk, R. M. Borisyuk, et al., Metastable and Unstable States in the Brain [in Russian], ONTI NtsBI, Academy of Sciences of the USSR, Pushchino (1986).Google Scholar
  6. 6.
    M. N. Livanov, “The neuronal mechanisms of memory,” Usp. Fiziol. Nauk., 6, No. 3, 66–89 (1975).Google Scholar
  7. 7.
    V. Lindsey, Synchronization Systems in Communication and Control [Russian translation], Sovetskoe Radio (1978).Google Scholar
  8. 8.
    S. Rose, The Making of Memory: From Molecules to Mind [Russian translation], Mir, Moscow (1995).Google Scholar
  9. 9.
    P. V. Simonov, The Emotional Brain [in Russian], Nauka, Moscow (1981).Google Scholar
  10. 10.
    A. A. Ukhtomskii, The Dominant [in Russian], Nauka, Moscow, Leningrad (1966).Google Scholar
  11. 11.
    A. A. Ukhtomskii, Selected Works [in Russian], Nauka, Moscow (1978).Google Scholar
  12. 12.
    D. G. Amaral and M. P. Witter, “The three-dimensional organization of the hippocampal formation: a review of anatomical data,” Neurosci., 31, 571–591 (1989).Google Scholar
  13. 13.
    A. Baddeley, “The episode buffer: a new component of working memory?” Trends Cogn. Sci., 4, 417–423 (2000).Google Scholar
  14. 14.
    A. Baddeley, “Exploring the central executive,” Quart. J. Exptl. Psychol., 49A, 5–28 (1996).Google Scholar
  15. 15.
    A. Baddeley and G. J. Hitch, “Working memory,”in: Recent Advances in Learning and Motivation, G. Bower (ed.), Academic Press, New York (1974), Vol. 8, pp. 47–90.Google Scholar
  16. 16.
    T. Brashwers-Krug, R. Shadmehr, and E. Bizzi, “Consolidation in human motor memory,” Nature, 382, 252–255 (1996).Google Scholar
  17. 17.
    K. H. Britten, “Cortical neurophysiology. Attention is everywhere,” Nature, 382, 497–498 (1996).Google Scholar
  18. 18.
    N. J. Cohen, J. Ryan, C. Hunt, et al., “Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies,” Hippocampus, 9, 83–98 (1999).Google Scholar
  19. 19.
    N. Cowan, “Attention and memory: An integrated framework,”in: Oxford Psychology, Oxford University Press, New York (1995; paperback edition 1997), Series 26, Vol. xv.Google Scholar
  20. 20.
    N. Cowan, “Evolving concepts of memory, storage, selective attention and their mutual constraints within human information processing systems,” Psychol. Rev., 104, 163–191 (1988).Google Scholar
  21. 21.
    K. J. W. Craik, “Theory of the human operator in control. I. The operator as an engineering system. II. Man as an element in control system,” Brit. J. Gen. Sect., 38, 142–148 (1948).Google Scholar
  22. 22.
    F. Crick, “Thinking about the brain,” Sci. Am., 241, 181–189 (1979).Google Scholar
  23. 23.
    J. Danckert and M. A. Goodale, “Blindsight: A conscious route to unconscious vision,” Curr. Biol., 10, R64–R67 (2000).Google Scholar
  24. 24.
    S. Dehaene, M. Kerszberg, and J.-P. Changeux, “A neuronal model of a global workspace in effortful cognitive tasks,” Proc. Natl. Acad. Sci. USA, 95, 14529–14534 (1998).Google Scholar
  25. 25.
    H. Eichenbaum, G. Schoenbaum, B. Young, and M. Bunsey, “Functional organization of the hippocampal memory system,” Proc. Natl. Acad. Sci. USA, 93, 13500–13507 (1996).Google Scholar
  26. 26.
    J. M. Fuster, “Cellular dynamics of network memory,” Z. Naturforsch. (C), 53, 670–676 (1998).Google Scholar
  27. 27.
    J. M. Fuster, “Distributed memory for both short and long term,” Neurobiol. Learn. Mem., 70, 268–274 (1998).Google Scholar
  28. 28.
    J. M. Fuster, “The prefrontal cortex-an update: time is of the essence,” Neuron, 30, 319–333 (2001).Google Scholar
  29. 29.
    P. S. Goldman-Rakic, “Regional and cellular fractionation of working memory,” Proc. Natl. Acad. Sci. USA, 93, 13473–13480 (1996).Google Scholar
  30. 30.
    P. M. Grasby, C. D. Frith, K. Friston, et al., “Activation of the human hippocampal formation during auditory-verbal long-term memory function,” Neurosci. Lett., 163, 185–188 (1993).Google Scholar
  31. 31.
    H. Haken, Principles of Brain Functioning: a Synergetic Approach to Brain Activity, Behavior and Cognition, Springer, Berlin (1996).Google Scholar
  32. 32.
    H. Haken, “Synopsis and introduction,”in: Synergetics of the Brain, E. Basar, et al. (eds.), Springer, New York (1983), pp. 3–25.Google Scholar
  33. 33.
    S. A. Hillyard, E. K. Vogel, and S. J. Luck, “Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence,” Phil Trans Roy. Soc. Lond., B353, 1257–1270 (1998).Google Scholar
  34. 34.
    E. R. John, Mechanisms of Memory, Academic Press, NY (1967).Google Scholar
  35. 35.
    M. J. Kahana, D. Seelig, and J. R. Madsen, “Theta returns,” Curr. Opin. Neurobiol., 11, 739–744 (2001).Google Scholar
  36. 36.
    N. Kanwisher and E. Wojciulik, “Visual attention: insights from brain imaging,” Nat. Rev. Neurosci., 1, 91–100 (2000).Google Scholar
  37. 37.
    R. W. Kentridge, C. A. Heywood, and L. Weiskrantz, “Attention without awareness in blindsight,” Proc. Roy. Soc. Lond. Biol. Sci., B266, 1805–1811 (1999).Google Scholar
  38. 38.
    W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Brain Res. Rev., 29, 169–195 (1999).Google Scholar
  39. 39.
    W. Klimesch, M. Doppelmayr, J. Schwaiger, et al., “‘Paradoxical’ alpha synchronization in a memory task,” Brain Res. Cogn. Brain Res., 7, 493–501 (1999).Google Scholar
  40. 40.
    V. I. Kryukov, “An attention model based on the principle of dominanta,” in: Neurocomputers and Attention. I. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (eds.), Manchester University Press, Manchester (1991), pp. 319–351.Google Scholar
  41. 41.
    V. I. Kryukov, G. N. Borisyuk, R. M. Borisyuk, et al., “Metastable and unstable states in the brain,”in: Stochastic Systems: Ergodicity, Memory, Morphogenesis, R. L. Dobrushin, V. I. Kryukov, an A. L. Toom (eds.), Manchester University Press, Manchester, UK, (1990), pp. 226–357.Google Scholar
  42. 42.
    R. Llinas and J. P. Welsh, “On the cerebellum and motor learning,” Curr. Opin. Neurobiol., 3, 958–965 (1993).Google Scholar
  43. 43.
    Z.-L. Lu, S. J. Williamson, and L. Kaufman, “Physiological measures predict behavioral lifetime of human auditory sensory memory,” Soc. Neurobiol. Abstr., 18, 1212 (1992).Google Scholar
  44. 44.
    C. von der Malsburg, “Binding in models of perception and brain function,” Curr. Opin. Neurobiol., 5, 520–526 (1995).Google Scholar
  45. 45.
    M.-M. Mesulam, “From sensation to cognition,” Brain, 121, 1013–1052 (1998).CrossRefPubMedGoogle Scholar
  46. 46.
    R. Miller, “Cortico-hippocampal interplay: Self-organizing phase-locked loops for indexing memory,” Psychobiol., 17, 115–128 (1989).Google Scholar
  47. 47.
    L. Nadel and M. Moscovitch, “Hippocampal contributions to cortical plasticity,” Neuropharmacology, 37, 431–439 (1998).Google Scholar
  48. 48.
    J. Newman and A. A. Grace, “Binding across time: The selective gating of frontal and hippocampal systems modulating working memory and attentional states,” Consc. Cognit., 8, 196–212 (1999).Google Scholar
  49. 49.
    L. Nyberg, A. R. McIntosh, R. Cabeza, et al., “Network analysis of positron emission tomography regional cerebral blood flow: ensemble inhibition during episode memory retrieval,” J. Neurosci., 16, 3753–3759 (1996).Google Scholar
  50. 50.
    K. A. Paller, “Consolidating dispersed neocortical memories: the missing link in amnesia,” Memory, 5, 73–88 (1997).Google Scholar
  51. 51.
    A. J. Parkin, “Human memory: the hippocampus is the key,” Curr. Biol., 6, 1583–1585 (1996).Google Scholar
  52. 52.
    Z. W. Pylyshyn and R. W. Storm, “Tracking multiple independent targets: evidence for a parallel tracking mechanism,” Spat. Vis., 3, 179–197 (1988).Google Scholar
  53. 53.
    G. Riedel, J. Micheau, A. G. Lam, et al., “Reversible neural inactivation reveals hippocampal participation in several memory processes,” Nat. Neurosci., 2, 898–905 (1999).Google Scholar
  54. 54.
    E. Rodriguez, N. George, J. P. Lachaux, et al., “Perception’s shadow: long-distance synchronization of human brain activity,” Nature, 397, 430–433 (1999).Google Scholar
  55. 55.
    E. Russo, “Controversy surrounds memory mechanism,” The Scientist, 13, 1–5 (1999).Google Scholar
  56. 56.
    J. Sarnthein, H. Petsche, P. Rappelsberger, et al., “Synchronization between prefrontal and posterior association cortex during human working memory,” Proc. Natl. Acad. Sci. USA, 95, 7092–7096 (1998).Google Scholar
  57. 57.
    T. B. Schillen and P. Konig, “Binding by temporal structure in multiple feature domains of an oscillatory neuronal network,” Biol. Cybern., 70, 397–405 (1994).Google Scholar
  58. 58.
    B. J. Scholl and Z. W. Pylyshyn, “Tracking multiple items through occlusion: clues to visual objecthood,” Cogn. Psychol., 38, 259–290 (1999).Google Scholar
  59. 59.
    T. J. Shors and L. D. Matzel, “Long-term potentiation: What’s learning got to do with it?” Behav. Brain Sci., 20, 597–655 (1997).Google Scholar
  60. 60.
    A. T. Smith, K. D. Singh, and M. W. Greenlee, “Attentional suppression of activity in the human visual cortex,” Neuroreport, 11, 271–277 (2000).Google Scholar
  61. 61.
    C. D. Tesche and J. Karhu, “Theta oscillations index human hippocampal activation during a working memory task,” Proc. Natl. Acad. Sci. USA, 97, 919–924 (2000).Google Scholar
  62. 62.
    A. Treisman, “The binding problem,” Curr. Opin. Neurobiol., 6, 171–178 (1996).Google Scholar
  63. 63.
    E. Tulving and H. J. Markowitsch, “Memory beyond the hippocampus,” Curr. Opin. Neurobiol., 7, 209–216 (1997).Google Scholar
  64. 64.
    L. G. Ungerleider, “Functional brain imaging studies of cortical mechanisms for memory,” Science, 270, 769–775 (1995).Google Scholar
  65. 65.
    M. A. Uusitalo, S. J. Williamson, and M. T. Seppa, “Dynamical organisation of the human visual system revealed by lifetimes of activation traces,” Neurosci. Lett., 213, 149–152 (1996).Google Scholar
  66. 66.
    M. Verfaellie and M. M. Keane, “The neural basis of aware and unaware forms of memory,” Semin. Neurol., 17, 153–161 (1997).Google Scholar
  67. 67.
    O. S. Vinogradova, “Discussion,”in: Functions of Septo-Hippocampal System, Elsevier, Amsterdam (1978), pp. 171–177.Google Scholar
  68. 68.
    O. S. Vinogradova, “Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information,” Hippocampus, 11, 578–598 (2001).CrossRefPubMedGoogle Scholar
  69. 69.
    O. S. Vinogradova, E. S. Brazhnik, and V. S. Stefekina, “Septo-hippocampal system, rhythmic oscillations and formation selection,”in: Neurocomputers and Attention. I. Neurobiology, Synchronization and Chaos, A. V. Holden and V. I. Kryukov (eds.), Manchester University Press, Manchester (1991), pp. 129–148.Google Scholar
  70. 70.
    S. N. Watamaniuk and S. P. McKee, “Seeing motion behind occluders,” Nature, 377, 729–730 (1995).Google Scholar
  71. 71.
    J. M. Wolfe and S. C. Bennett, “Preattentive object files: shapeless bundles of basic features,” Vision. Res., 37, 25–43 (1997).Google Scholar
  72. 72.
    D. Zipser, B. Kehoe, G. Littlewort, and J. Fuster, “A spiking network model of short-term active memory,” J. Neurosci., 13, 3406–3420 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. I. Kryukov
    • 1
  1. 1.Svyato-Danilov MonasteryMoscow

Personalised recommendations