Mechanics of Composite Materials

, Volume 41, Issue 1, pp 77–86 | Cite as

Estimating the parameters of fatigue curve of a composite material

  • Yu. M. Paramonov
  • M. A. Kleinhof
  • A. Yu. Paramonova


By using the method of maximum likelihood, the parameters of two versions of a mathematical model for fatigue damage accumulation in a laminate are estimated. The models, which are founded on the Markov chain theory, are very simple: they do not take into account the specific structural features of a composite and therefore cannot provide numerical coincidence with experimental fatigue test data, but they can be used for a nonlinear regression analysis of fatigue curves. A simple method is offered for approximately estimating model parameters, some of which characterize the distribution of the local static strength. By using such models, we can predict the relative changes in fatigue curves from known relative variations in the parameters of static strength and also predict the distribution function of fatigue life in program fatigue tests.


strength fatigue life composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. M. Paramonov, M. A. Kleinhof, and A. Yu. Paramonova, “A probabilistic model of the fatigue life of composite materials for fatigue-curve approximations,” Mech. Compos. Mater., 38, No.6, 485–492 (2002).Google Scholar
  2. 2.
    A. Yu. Paramonova, M. A. Kleinhof, and Yu. M. Paramonov, “Markov chains theory use for fatigue curve of composite material approximation,” Aviation, No. 6, 103–108, Vilnius (2002).Google Scholar
  3. 3.
    M. A. Kleinhof, Investigation of the Static and Fatigue Strengths of Composite Materials Used in the Structure of Aircrafts, PhD Thesis [in Russian], Riga (1983).Google Scholar
  4. 4.
    F. G. Pascual and W. Q. Meeker, “Estimating fatigue curves with the random fatigue-limit model,” Technometrics, 41, 277–302 (1999).Google Scholar
  5. 5.
    T. Shimokawa and Y. Hamaguchi, “Statistical evaluation of fatigue life and fatigue strength in circular-holed notched specimens of a carbon eight-harness-satin/epoxy laminate,” in: T. Tanaka, S. Nishijima, and M. Ichikawa (eds.), Current Japanese Materials Research. Vol. 2, Statistical Research on Fatigue and Fracture, Elsevier, London (1987), pp. 159–176.Google Scholar
  6. 6.
    J. Kemeny and J. Snell, Finite Markov Chains [Russian translation], Nauka, Moscow (1970).Google Scholar
  7. 7.
    A. Paramonova, M. Kleinhof, and Yu. Paramonov, “Markov models of composite degradation in fatigue tests, ” in: Public Health, Medicine and Biology. Vol. 1, Longevity, Aging and Degradation Models in Reliability [in Russian], St. Petersburg (2004), pp. 217–234.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. M. Paramonov
    • 1
  • M. A. Kleinhof
    • 1
  • A. Yu. Paramonova
    • 1
  1. 1.Riga Technical UniversityRigaLatvia

Personalised recommendations