Skip to main content
Log in

Slow-fast hamiltonian dynamics near a ghost separatix loop

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the behavior of a slow-fast (singularly perturbed) Hamiltonian system with two degrees of freedom, losing one degree of freedom at the singular limit ɛ = 0, near its ghost separatrix loop, i.e., a homoclinic orbit to a saddle equilibrium of the slow (one degree of freedom) system. We show that, for small ɛ>0, the system has an equilibrium of the saddle-center type and prove, using the method of Delatte, that the Moser normal form exists in an O (ɛ)-neighborhood of the equilibrium. Then we show that one-dimensional separatrices of the equilibria are generically split with exponentially small splitting. Also, we demonstrate that out of some exponentially thin neighborhood of the ghost separatrix loop in the level of a Hamiltonian containing a saddle-center, the major part of the phase space is foliated into Diophantine invariant tori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. L. Alfimov, V. M. Eleonsky, and N. E. Kulagin, “Dynamical systems in the theory of solitons in the presence of nonlocal interactions,” Chaos: Int. J. Nonlin. Sci., 2, 565 (1992).

    Google Scholar 

  2. G. L. Alfimov, V. M. Eleonsky, and L. M. Lerman, “Solitary wave solutions of nonlocal sine-Gordon equation,” Chaos: Int. J. Nonlin. Sci., 8, No. 1, 257–271 (1998).

    Google Scholar 

  3. C. J. Amick and K. Kirchgässner, “Solitary water-waves in the presence of surface tension,” Arch. Rat. Mech. Anal., 105, 1–49 (1989).

    Google Scholar 

  4. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory, Pergamon Press, Oxford (1966).

    Google Scholar 

  5. V. I. Arnol’d, “Small denominators and the problem of motion stability in classical and celestial mechanics,” Russ. Math. Surv., 18, No. 6, 85–191 (1963).

    Google Scholar 

  6. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Ilyashenko, and L. P. Shil’nikov, “Bifurcation theory,” Encycl. Math. Sci., 5, Springer-Verlag, New York-Berlin (1994).

    Google Scholar 

  7. V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics,” Encycl. Math. Sci., 3, Springer-Verlag, New York-Berlin (1993).

    Google Scholar 

  8. H. W. Broer, S. N. Chow, Y. Kim, and G. Vegter, “A normally elliptic Hamiltonian Hopf bifurcation,” Z. Angew. Math. Phys., 44, 389–432 (1993).

    Google Scholar 

  9. A. D. Bryuno, Local Methods in Nonlinear Analysis [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  10. J. Bruening, S. Yu. Dobrokhotov, and M. A. Poteryakhin, “On averaging for Hamiltonian systems with one fast phase and small amplitudes,” Mat. Zametki, 70, No. 5, 660–669 (2001).

    Google Scholar 

  11. J. C. Conley, “On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits,” J. Differ. Equations, 5, 136–158 (1969).

    Google Scholar 

  12. D. Delatte, “On normal forms in Hamiltonian dynamics. A new approach to some convergence questions,” Ergodic Theory Dyn. Syst., 15, 49–66 (1995).

    Google Scholar 

  13. D. C. Diminnie and R. Haberman, “Slow passage through a saddle-center bifurcation,” J. Nonlin. Sci., 10, No. 2, 197–222 (2000).

    Google Scholar 

  14. W. Eckhaus, “Singular perturbations of homoclinic orbits in R4,” SIAM J. Math. Anal., 23, No. 5, 95–127.

  15. N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” J. Differ. Equations, 31, 53–98 (1979).

    Google Scholar 

  16. V. G. Gelfreich, “A proof of the exponentially small transversality of the separatrices for the standard map,” Commun. Math. Phys., 201, 155–216 (1999).

    Google Scholar 

  17. V. Gelfreich and V. Lazutkin, “Separatrix splitting: perturbation theory and exponential smallness,” Russ. Math. Surv., 56, No. 3, 499–558 (2001).

    Google Scholar 

  18. V. Gelfreich and L. Lerman, “Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system,” Nonlinearity, 15, 447–457 (2002).

    Google Scholar 

  19. V. Gelfreich and L. Lerman, Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system, Math. Phys. Preprint Archive, No. 02–187 (2002); to appear in Phys. D (2003).

  20. C. Grotta Ragazzo, “Irregular dynamics and homoclinic orbits to Hamiltonian saddle-centers,” Commun. Pure Appl. Math., 50, 105–147 (1997).

    Google Scholar 

  21. R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, New Jersey (1965).

    Google Scholar 

  22. J. M. Hammerley, G. Mazzarino, “Computational aspects of some autonomous differential equations,” Proc. R. Soc. London A, 424 (1989).

  23. M. Hirsh, C. Pugh, and M. Shub, “Invariant manifolds,” in: Lect. Notes Math., 583, Springer-Verlag, New York (1977).

    Google Scholar 

  24. J. K. Hunter and J. Scheurle, “Existence of perturbed solitary wave solutions to a model equation for water waves,” Phys. D, 32, 253–268 (1988).

    Google Scholar 

  25. O. Yu. Kol’tsova, “Multi-round homoclinic orbits to a Hamiltonian with saddle-center,” in: Proc. Int. Conf. Dedicated to the 100th Anniversary of A. A. Andronov, Vol. 1, Mathematical Problems of Nonlinear Dynamics, Inst. Appl. Phys. RAS, University of Nizhny Novgorod (2002), pp. 275–283.

  26. O. Kol’tsova and L. M. Lerman, “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center,” Int. J. Bifurcation Chaos, 5, No. 2, 397–408 (1995).

    Google Scholar 

  27. L. M. Lerman, “Hamiltonian systems with a separatrix loop of a saddle-center,” Selecta Math. Sov., 10, 297–306 (1991).

    Google Scholar 

  28. L. M. Lerman and Ya. L. Umanskii, “Four-dimensional integrable Hamiltonian systems. Topological aspects,” Trans. Math. Monogr., 176 (1998).

  29. A. Mielke, P. Holmes, and O. O’Reilly, “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center,” J. Dyn. Differ. Equations, 4, 95–126 (1992).

    Google Scholar 

  30. E. F. Mischenko and N. Kh. Rozov, Singularly Perturbed Differential Equations and Relaxation Oscillations [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  31. J. K. Moser, “On the generalization of a theorem of Liapunoff,” Commun. Pure Appl. Math., 11, 257–275 (1958).

    Google Scholar 

  32. A. Neishtadt, “On the accuracy of conservation of adiabatic invariant,” J. Appl. Math. Mech., 45, No. 1, 58–63 (1982).

    Google Scholar 

  33. A. I. Neishtadt, “The separation of motions in systems with rapidly rotating phase,” J. Appl. Math. Mech., 48, No. 2, 133–139 (1985).

    Google Scholar 

  34. A. I. Neishtadt, “Persistence of stability loss for dynamical bifurcations,” J. Differ. Equations, 23, No. 12, 1385–1391 (1987).

    Google Scholar 

  35. L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev, and L. Chua, “Methods of qualitative theory in nonlinear dynamics, I,” World Scientific Series on Nonlinear Science, Ser. A, 4, World Scientific (1998).

  36. L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev, and L. Chua, “Methods of qualitative theory in nonlinear dynamics, II,” World Scientific Series on Nonlinear Science, Ser. A, 5, World Scientific (2001).

  37. A. G. Sokol’ski, “On stability of autonomous Hamiltonian system with two degrees of freedom at a first-order resonance,” Prikl. Mat. Mekh., 41, 24–33 (1977).

    Google Scholar 

  38. D. V. Turaev and L. P. Shil’nikov, “On Hamiltonian systems with homoclinic curves of a saddle,” Dokl. Akad. Nauk SSSR, Ser. Mat., 304, 811–814 (1989).

    Google Scholar 

  39. A. Vanderbauwhede and B. Fiedler, “Homoclinic period blow-up in reversible and conservative systems,” Z. Angew. Math. Phys., 43, 292–318.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 8 , Suzdal Conference—2, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerman, L., Gelfreich, V. Slow-fast hamiltonian dynamics near a ghost separatix loop. J Math Sci 126, 1445–1466 (2005). https://doi.org/10.1007/PL00021975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021975

Keywords

Navigation