Journal of Mathematical Sciences

, Volume 126, Issue 4, pp 1229–1242 | Cite as

Perestroikas of shocks in optimal control

  • I. A. Bogaevsky


Shocks in optimal control are formed by points where two or more extremal trajectories end. Their generic bifurcations happening in the course of time (perestroikas) are topologically classified in two and three dimensions for the classical optimal control problem with a smooth Hamiltonian.


Control Problem Optimal Control Problem Extremal Trajectory Generic Bifurcation Classical Optimal Control Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnol’d, “Wave front evolution and equivariant Morse lemma,” Commum. Pure Appl. Math., 29, No. 6, 557–582 (1976).Google Scholar
  2. 2.
    V. I. Arnol’d, Yu. M. Baryshnikov, and I. A. Bogaevsky, “Singularities and bifurcations of potential flows,” Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles(S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, Eds.), Manchester University Press, Manchester (1991), pp. 290–300.Google Scholar
  3. 3.
    V. I. Arnol’d, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston (1985).Google Scholar
  4. 4.
    Yu. M. Baryshnikov, “Topology of surgeries of nonsmoothness sets of minimum functions of variational problems,” Funct. Anal. Appl., 24, No. 3, 220–221 (1990).Google Scholar
  5. 5.
    I. A. Bogaevsky, “Metamorphoses of singularities of minimum functions, and bifurcations of shock waves of the Bürgers equation with vanishing viscosity,” Algebra Analiz, 1, No. 4, 1–16 (1989).Google Scholar
  6. 6.
    I. A. Bogaevsky, “Perestroikas of fronts in evolutionary families,” Proc. Steklov Inst. Math., 209, 57–72 (1995).Google Scholar
  7. 7.
    I. A. Bogaevsky, “Perestroikas of shocks and singularities of minimum functions,” Phys. D, 173, Nos. 1-2, 1–28 (2002); Scholar
  8. 8.
    L. N. Bryzgalova, “Singularities of the maximum of a function that depends on parameters,” Funkts. Anal. Prilozh., 11, No. 1, 59–60 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. A. Bogaevsky
    • 1
  1. 1.Moscow Independent UniversityMoscow

Personalised recommendations