Journal of Analytical Chemistry

, Volume 60, Issue 2, pp 119–124 | Cite as

Characterization of the interlaboratory reproducibility of results in quantitative gas-chromatographic analysis using the internal normalization method

  • I. G. Zenkevich
  • A. Yu. Eshchenko
  • I. O. Klimova


A comparison of the results of gas-chromatographic analysis performed for the same samples with the use of various instruments with flame-ionization detectors and different (packed and capillary) columns indicates statistically significant differences in the results of data processing by the internal normalization method. Such variations in relative peak areas were detected on the same instrument on a comparison between data obtained under isothermal conditions and with temperature programming. Conceivable reasons for the observed changes in relative peak areas and procedures for the evaluation of errors due to this effect in the analysis of various samples on particular instruments are considered.


Analytical Chemistry Data Processing Normalization Method Temperature Programming Isothermal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guiochon, G. and Guillemin, C.L., Quantitative Gas Chromatography: For Laboratory Analysis and On-line Process Control, Amsterdam: Elsevier, 1988. Translated under the title Kolichestvennaya gazovaya khromatografiya, Moscow: Mir, 1991, part 1, 2.Google Scholar
  2. 2.
    Stolyarov, B.V., Savinov, I.M., Vitenberg, A.G., et al., Prakticheskaya gazovaya i zhidkostnaya khromatografiya (Applied Gas and Liquid Chromatography), St. Petersburg, 1998.Google Scholar
  3. 3.
    Cornu, A. and Massot, R., Compilation of Mass Spectral Data, London: Heyden, 1975, vol. 1.Google Scholar
  4. 4.
    Lea, R.E., Bramston-Cocl, R., and Tschida, J., Anal. Chem., 1983, vol. 55, p. 626.Google Scholar
  5. 5.
    Zenkevich, I.G. and Maevskii, G.A., Zh. Anal. Khim., 1991, vol. 46, no. 4, p. 714.Google Scholar
  6. 6.
    Carelli, A.A. and Cert, A., J. Chromatogr., 1993, vol. 630, p. 213.Google Scholar
  7. 7.
    Gonzalez-Bravo, L., Marrero-Delange, D., and Gonzalez-Guevara, J.L., J. Chromatogr., A, 2000, vol. 888, p. 159.Google Scholar
  8. 8.
    Zenkevich, I.G. and Kosman, V.M., Zh. Anal. Khim., 2001, vol. 56, no. 3, p. 298[J. Anal. Chem. (Engl. Transl.), vol. 56, no. 3, p. 263].Google Scholar
  9. 9.
    Zenkevich, I.G., Maksimov, B.N., and Rodin, A.A., Zh. Anal. Khim., 1995, vol. 50, no. 2, p. 118.Google Scholar
  10. 10.
    Doneanu, C., Radulescu, V., Efstatiade, D.M., Rusu, V., and Covaci, A., J. Microcolumn Sep., 1997, vol. 9, no. 1, p. 37.Google Scholar
  11. 11.
    Taylor, J.R., An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, Mill Valley: University Science Books, 1982. Translated under the title Vvedenie v teoriyu oshibok, Moscow: Mir, 1985.Google Scholar
  12. 12.
    Wood, K.V., Grande, A.H., and Taylor, I.W., Anal. Chem., 1978, vol. 50, no. 12, p. 1652.Google Scholar
  13. 13.
    Kurbatova, S.V., Kolosova, E.A., and Vigdergauz, M.S., Zh. Anal. Khim., 1993, vol. 48, no. 5, p. 864.Google Scholar
  14. 14.
    Berezkin, V.G., Loshchilova, V.D., Pankov, A.G., and Yagodovskii, V.D., Khromato-raspredelitel’nyi metod (Partition Chromatography), Moscow: Nauka, 1976.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • I. G. Zenkevich
    • 1
  • A. Yu. Eshchenko
    • 2
  • I. O. Klimova
    • 1
  1. 1.Chemistry Research InstituteSt. Petersburg State UniversityPetrodvoretsRussia
  2. 2.Department of ChemistrySt. Petersburg State University (Petrodvorets Branch)PetrodvoretsRussia

Personalised recommendations