High Temperature

, Volume 43, Issue 1, pp 51–57 | Cite as

The thermophysical properties of KhN55VMTKYu nickel-based heat-resistant alloy

  • V. Ya. Chekhovskoi
  • V. E. Peletskii
Thermophysical Properties Of Materials


New experimental data are given for the KhN55VMTKYu industrial nickel-based heat-resistant alloy on its heat capacity at temperatures from 300 to 1000 K and on the thermal conductivity coefficient at T = 380-1450 K. The newly obtained and previously available data are used to construct approximating equations and tables of smoothed values in the range from 300 to 1200 K for heat capacity, enthalpy, average heat capacity, thermal conductivity, average coefficient of thermal expansion, density, and thermal diffusivity of the alloy. The effect of disordering of the Ni3 (Ti, Al) intermetallic compound on the properties of the alloy is examined. The activation energy of disordering of the alloy Q = 0.93 eV and the temperature dependence of the enthalpy of disordering are estimated, as well as the concentration of intermetallic compound in the alloy.


Experimental Data Physical Chemistry Enthalpy Thermal Conductivity Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maslenkov, S.B., Zharoprochnye stali i splavy. Spravochnik (Heat-Resistant Steels and Alloys: A Reference Book), Moscow: Metallurgiya, 1983.Google Scholar
  2. 2.
    Khimushin, F.F., Zharoprochnye stali i splavy (Heat-Resistant Steels and Alloys), Moscow: Metallurgiya, 1969.Google Scholar
  3. 3.
    Totskii, E.E., Teplofiz. Vys. Temp., 1964, vol. 2, no. 2, p. 205.Google Scholar
  4. 4.
    Lyusternik, V.E., Teplofiz. Vys. Temp., 1963, vol. 1, no. 1, p. 141.Google Scholar
  5. 5.
    GOST (State Standard) 3044-61. Termopary. Graduirovochnye tablitsy pri temperature svobodnykh kontsov 0°C (Thermocouples. Calibration Tables at Temperature of Free Ends of 0 °C), Moscow: Standartgiz, 1961.Google Scholar
  6. 6.
    Chekhovskoi, V.Ya. and Tarasov, V.D., Zh. Fiz. Khim., 2000, vol. 74, no. 2, p. 208.Google Scholar
  7. 7.
    Chekhovskoi, V. Ya., Tarasov, V.D., and Arseev, I.V., Teplofiz. Vys. Temp., 2001, vol. 39, no. 3, p. 450 (High Temp. (Engl. transl.), vol. 39, no. 3, p. 420).Google Scholar
  8. 8.
    GOST (State Standard) 8.207-76. Pryamye izmereniya s mnogokratnymi nablyudeniyami. Metody obrabotki rezul’tatov nablyudenii. Osnovnye polozheniya (State Standard 8.207-76 for Direct Measurements with Repeated Observations. Methods of Processing the Observation Results. Basic Provisions), Moscow: Izd. Standartov, 1991.Google Scholar
  9. 9.
    Gol’dshtein, M.I., Grachev, S.V., and Veksler, Yu.G., Spetsial’nye stali (Special Steels), Moscow: Izd. MISIS (Moscow Inst. of Steel and Alloys), 1999.Google Scholar
  10. 10.
    Peletskii, V.E. and Sobol’, Ya. G., Teplofiz. Vys. Temp., 1970, vol. 8, no. 6, p. 1197.Google Scholar
  11. 11.
    Chekhovskoi, V.Ya. and Peletskii, V.E., Teplofiz. Vys. Temp., 2003, vol. 41, no. 2, p. 259 (High Temp. (Engl. transl.), vol. 41, no. 2, p. 221).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. Ya. Chekhovskoi
    • 1
  • V. E. Peletskii
    • 1
  1. 1.Russian Academy of Sciences (IVTAN)Institute of High Energy Densities Joint Institute of High TemperaturesMoscowRussia

Personalised recommendations