Skip to main content
Log in

Identification of intermediate and product from methemoglobin-catalyzed oxidation of o-phenylenediamine in two-phase aqueous—organic system

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Methemoglobin (metHb) was used as a mimetic enzyme for peroxidase to catalyze the oxidation reaction of o-phenylenediamine (OPDA) with H2O2 functioning as an oxidant. A reaction intermediate was obtained in two-phase aqueous-organic system and an absorption peak at 710 nm was confirmed to be that of the intermediate in relation to OPDA. The isolated product and intermediate were characterized by UV-V is and IR spectrophotometry and HPLC-tandem mass spectrometry. The results showed that the product is 2,3-diaminophenazine, the molecular mass of the intermediate is 212 daltons, and a conceivable structure of the intermediate is suggested. Combining the catalyzed reaction mechanism of peroxidase and our experimental results, a conceivable oxidation reaction mechanism of OPDA and H2O2 using metHb as catalyst is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

OPDA:

o-phenylenediamine

Hb:

hemoglobin

metHb:

methemoglobin

HRP:

horseradish peroxidase

REFERENCES

  1. Fujiata, A., Senzu, H., Kunitake, T., and Hamachi, I. (1994) Chem. Lett., 1219–1222.

  2. Dawson, J. H. (1988) Science, 240, 433–439.

    CAS  PubMed  Google Scholar 

  3. Laurenti, E., Ghibaudi, E., Ardissone, S., and Ferrari, R. P. (2003) J. Inorg. Biochem., 95, 171–176.

    Google Scholar 

  4. Priori, A. M., Indiani, C., Sanctis, G. D., Marini, S., Santucci, R., Smulevich, G., and Coletta, M. (2000) J. Inorg. Biochem., 79, 25–30.

    Google Scholar 

  5. Gallati, H., and Brobeck, H. (1982) J. Clin. Chem. Clin. Biochem., 20, 221–225.

    Google Scholar 

  6. Tarcha, P. J., Chu, V. P., and Whittern, D. (1987) Analyt. Biochem., 165, 230–233.

    Google Scholar 

  7. Giardina, B., Messana, I., Scatena, R., and Castagnola, M. (1995) Crit. Rev. Biochem. Mol. Biol., 30, 165–196.

    Google Scholar 

  8. Mieyal, J. J., Acherman, R. S., Blumer, J. L., and Freeman, L. S. (1976) J. Biol. Chem., 251, 3436–3441.

    Google Scholar 

  9. Yoshida, Y., Kashiba, K., and Niki, E. (1994) Biochim. Biophys. Acta, 1201, 165–172.

    Google Scholar 

  10. Klyachko, N. L., and Klibanov, A. M. (1992) Biochem. Biotechnol., 37, 53–68.

    Google Scholar 

  11. Alvarez, J. C., and Ortiz de Montellano, P. R. (1992) Biochemistry, 31, 8315–8322.

    Google Scholar 

  12. Ortiz de Montellano, P. R., and Catalano, C. E. (1985) J. Biol. Chem., 260, 9265–9271.

    Google Scholar 

  13. Liu, Z. H., Wang, Q. L., Mao, L. Y., and Cai, R. X. (2000) Analyt. Chim. Acta, 413, 167–173.

    Google Scholar 

  14. Zhang, K., Cai, R. X., Chen, D. H., and Mao, L. Y. (2000) Analyt. Chim. Acta, 413, 109–113.

    Google Scholar 

  15. Zhang, K., Mao, L. Y., and Cai, R. X. (2000) Talanta, 51, 179–186.

    Google Scholar 

  16. Jiang, Y. L., and Feng, C. L. (2001) Chin. J. Spectr. Lab., 18, 112–116.

    Google Scholar 

  17. Alayash, A. I., Patel, R. P., and Cashon, R. E. (2001) Antiox. Redox. Signal, 3, 313–327.

    Google Scholar 

  18. Jesus-Bonilla, W. D., Cortes-Figueroa, J. E., Souto-Bachiller, F. A., Rodriguez, L., and Lopez-Garriga, J. (2001) Arch. Biochem. Biophys., 390, 304–308.

    Google Scholar 

  19. Ozaki, S., Matsui, T., Roach, M. P., and Watanabe, Y. (2000) Coordination Chem. Rev., 198, 39–59.

    Google Scholar 

  20. Cross, A. D., and Jones, R. A. (1969) An Introduction to Practical Infrared Spectroscopy, 3rd Ed., Butterworth, London.

    Google Scholar 

  21. Dolphin, D., and Wick, A. (1977) Tabulation of Infrared Spectral Data, Wiley, New York-London-Sydney-Toronto.

    Google Scholar 

  22. Socrates, G. (1980) Infrared Characteristic Group Frequencies, John Wiley and Sons, Chichester-New York-Brisbane-Toronto.

    Google Scholar 

  23. Nakanishi, K., and Solomon, P. H. (1977) Infrared Absorption Spectroscopy, 2nd Ed., Holden-Day, London.

    Google Scholar 

  24. Rodriguez-Lopez, J. N., Gilabert, M. A., Tudela, J., Thorneley, R. N. F., and Garcia-Canovas, F. (2000) Biochemistry, 39, 13201–13209.

    Google Scholar 

  25. Hiner, A. N. P., Raver, E. L., Thorneley, R. N. F., Garcia-Canovas, F., and Rodriguez-Lopez, J. N. (2002) J. Inorg. Biochem., 91, 27–34.

    Google Scholar 

  26. Everse, J. (1998) Free Rad. Biol. Med., 24, 1338–1346.

    Google Scholar 

  27. Dunford, H. B. (1982) Adv. Inorg. Biochem., 4, 41–68.

    Google Scholar 

  28. Furtmuller, P. G., Jantschko, W., Regelsberger, G., and Obinger, C. (2001) Biochim. Biophys. Acta, 1548, 121–128.

    Google Scholar 

  29. Furtmuller, P. G., Burner, U., Regelsberger, G., and Obinger, C. (2000) Biochemistry, 39, 15578–15584.

    Google Scholar 

  30. Dunford, H. B. (1991) in Peroxidases in Chemistry and Biology (Everse, J., Everse, K. E., and Grisham, M. B., eds.) Vol. 2, CRC Press, Boca Raton.

    Google Scholar 

  31. Mieyal, J. J. (1985) Monooxygenase Activity of Hemoglobin and Myoglobin, in Reviews in Biochemical Toxicology (Hodgson, E., Bend, J. R., Philpot, R. M., eds.) Vol. 7, Elsevier, New York, pp. 1–66.

    Google Scholar 

  32. Grisham, M. B., and Everse, J. (1991) Pro-oxidant Activity of Hemoglobin and Myoglobin, in Peroxidases in Chemistry and Biology (Everse, J., Everse, K. E., and Grisham, M. B., eds.) CRC Press, Boca Raton, FL, pp. 335–344.

    Google Scholar 

  33. Everse, J., Johnson, M. C., and Marini, M. A. (1994) Meth. Enzymol., 231, 547–561.

    Google Scholar 

  34. King, N. K., and Winfield, M. E. (1963) J. Biol. Chem., 238, 1520–1528.

    Google Scholar 

  35. Wittenberg, J. B. (1978) J. Biol. Chem., 253, 5694–5695.

    Google Scholar 

  36. McArthur, K. M., and Davies, M. J. (1993) Biochim. Biophys. Acta, 1202, 173–181.

    Google Scholar 

  37. Davies, M. J. (1991) Biochim. Biophys. Acta, 1077, 86–90.

    Google Scholar 

  38. George, P., and Irvine, D. H. (1952) Biochem. J., 52, 511–517.

    Google Scholar 

  39. George, P., and Irvine, D. H. (1956) J. Colloid Sci., 11, 327–339.

    Google Scholar 

  40. Giulivi, C., and Davies, K. J. A. (1990) J. Biol. Chem., 265, 19453–19460.

    Google Scholar 

  41. Alayash, A. I. (2001) Artif. Cells. Blood. Substit. Immobil. Biotechnol., 29, 415–425.

    Google Scholar 

  42. Jiao, K., Sun, G., and Zhang, S. S. (1998) Science in China (Ser. B), 28, 157–163.

    Google Scholar 

  43. Uppu, R. M., and Pryor, W. A. (1999) J. A. Chem. Soc., 121, 9738–9739.

    Google Scholar 

  44. Tao, W. S. (1989) Immunology and Immunology Determination [in Chinese], The People Panitation Press, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Lin Zou.

Additional information

Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 113–122. Original Russian Text Copyright © 2005 by De-Jia Li, Xi-Wen Li, Yu-Xiang Xie, Xiao-Qiang Cai, Guo-Lin Zou. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-101, August 29, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DJ., Li, XW., Xie, YX. et al. Identification of intermediate and product from methemoglobin-catalyzed oxidation of o-phenylenediamine in two-phase aqueous—organic system. Biochemistry (Moscow) 70, 92–99 (2005). https://doi.org/10.1007/PL00021766

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021766

Key words

Navigation