Advertisement

Biochemistry (Moscow)

, Volume 70, Issue 1, pp 92–99 | Cite as

Identification of intermediate and product from methemoglobin-catalyzed oxidation of o-phenylenediamine in two-phase aqueous—organic system

  • De-Jia Li
  • Xi-Wen Li
  • Yu-Xiang Xie
  • Xiao-Qiang Cai
  • Guo-Lin Zou
Article
  • 66 Downloads

Abstract

Methemoglobin (metHb) was used as a mimetic enzyme for peroxidase to catalyze the oxidation reaction of o-phenylenediamine (OPDA) with H2O2 functioning as an oxidant. A reaction intermediate was obtained in two-phase aqueous-organic system and an absorption peak at 710 nm was confirmed to be that of the intermediate in relation to OPDA. The isolated product and intermediate were characterized by UV-V is and IR spectrophotometry and HPLC-tandem mass spectrometry. The results showed that the product is 2,3-diaminophenazine, the molecular mass of the intermediate is 212 daltons, and a conceivable structure of the intermediate is suggested. Combining the catalyzed reaction mechanism of peroxidase and our experimental results, a conceivable oxidation reaction mechanism of OPDA and H2O2 using metHb as catalyst is proposed.

Key words

hemoglobin o-phenylenediamine intermediate reaction mechanism 

Abbreviations

OPDA

o-phenylenediamine

Hb

hemoglobin

metHb

methemoglobin

HRP

horseradish peroxidase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fujiata, A., Senzu, H., Kunitake, T., and Hamachi, I. (1994) Chem. Lett., 1219–1222.Google Scholar
  2. 2.
    Dawson, J. H. (1988) Science, 240, 433–439.PubMedGoogle Scholar
  3. 3.
    Laurenti, E., Ghibaudi, E., Ardissone, S., and Ferrari, R. P. (2003) J. Inorg. Biochem., 95, 171–176.Google Scholar
  4. 4.
    Priori, A. M., Indiani, C., Sanctis, G. D., Marini, S., Santucci, R., Smulevich, G., and Coletta, M. (2000) J. Inorg. Biochem., 79, 25–30.Google Scholar
  5. 5.
    Gallati, H., and Brobeck, H. (1982) J. Clin. Chem. Clin. Biochem., 20, 221–225.Google Scholar
  6. 6.
    Tarcha, P. J., Chu, V. P., and Whittern, D. (1987) Analyt. Biochem., 165, 230–233.Google Scholar
  7. 7.
    Giardina, B., Messana, I., Scatena, R., and Castagnola, M. (1995) Crit. Rev. Biochem. Mol. Biol., 30, 165–196.Google Scholar
  8. 8.
    Mieyal, J. J., Acherman, R. S., Blumer, J. L., and Freeman, L. S. (1976) J. Biol. Chem., 251, 3436–3441.Google Scholar
  9. 9.
    Yoshida, Y., Kashiba, K., and Niki, E. (1994) Biochim. Biophys. Acta, 1201, 165–172.Google Scholar
  10. 10.
    Klyachko, N. L., and Klibanov, A. M. (1992) Biochem. Biotechnol., 37, 53–68.Google Scholar
  11. 11.
    Alvarez, J. C., and Ortiz de Montellano, P. R. (1992) Biochemistry, 31, 8315–8322.Google Scholar
  12. 12.
    Ortiz de Montellano, P. R., and Catalano, C. E. (1985) J. Biol. Chem., 260, 9265–9271.Google Scholar
  13. 13.
    Liu, Z. H., Wang, Q. L., Mao, L. Y., and Cai, R. X. (2000) Analyt. Chim. Acta, 413, 167–173.Google Scholar
  14. 14.
    Zhang, K., Cai, R. X., Chen, D. H., and Mao, L. Y. (2000) Analyt. Chim. Acta, 413, 109–113.Google Scholar
  15. 15.
    Zhang, K., Mao, L. Y., and Cai, R. X. (2000) Talanta, 51, 179–186.Google Scholar
  16. 16.
    Jiang, Y. L., and Feng, C. L. (2001) Chin. J. Spectr. Lab., 18, 112–116.Google Scholar
  17. 17.
    Alayash, A. I., Patel, R. P., and Cashon, R. E. (2001) Antiox. Redox. Signal, 3, 313–327.Google Scholar
  18. 18.
    Jesus-Bonilla, W. D., Cortes-Figueroa, J. E., Souto-Bachiller, F. A., Rodriguez, L., and Lopez-Garriga, J. (2001) Arch. Biochem. Biophys., 390, 304–308.Google Scholar
  19. 19.
    Ozaki, S., Matsui, T., Roach, M. P., and Watanabe, Y. (2000) Coordination Chem. Rev., 198, 39–59.Google Scholar
  20. 20.
    Cross, A. D., and Jones, R. A. (1969) An Introduction to Practical Infrared Spectroscopy, 3rd Ed., Butterworth, London.Google Scholar
  21. 21.
    Dolphin, D., and Wick, A. (1977) Tabulation of Infrared Spectral Data, Wiley, New York-London-Sydney-Toronto.Google Scholar
  22. 22.
    Socrates, G. (1980) Infrared Characteristic Group Frequencies, John Wiley and Sons, Chichester-New York-Brisbane-Toronto.Google Scholar
  23. 23.
    Nakanishi, K., and Solomon, P. H. (1977) Infrared Absorption Spectroscopy, 2nd Ed., Holden-Day, London.Google Scholar
  24. 24.
    Rodriguez-Lopez, J. N., Gilabert, M. A., Tudela, J., Thorneley, R. N. F., and Garcia-Canovas, F. (2000) Biochemistry, 39, 13201–13209.Google Scholar
  25. 25.
    Hiner, A. N. P., Raver, E. L., Thorneley, R. N. F., Garcia-Canovas, F., and Rodriguez-Lopez, J. N. (2002) J. Inorg. Biochem., 91, 27–34.Google Scholar
  26. 26.
    Everse, J. (1998) Free Rad. Biol. Med., 24, 1338–1346.Google Scholar
  27. 27.
    Dunford, H. B. (1982) Adv. Inorg. Biochem., 4, 41–68.Google Scholar
  28. 28.
    Furtmuller, P. G., Jantschko, W., Regelsberger, G., and Obinger, C. (2001) Biochim. Biophys. Acta, 1548, 121–128.Google Scholar
  29. 29.
    Furtmuller, P. G., Burner, U., Regelsberger, G., and Obinger, C. (2000) Biochemistry, 39, 15578–15584.Google Scholar
  30. 30.
    Dunford, H. B. (1991) in Peroxidases in Chemistry and Biology (Everse, J., Everse, K. E., and Grisham, M. B., eds.) Vol. 2, CRC Press, Boca Raton.Google Scholar
  31. 31.
    Mieyal, J. J. (1985) Monooxygenase Activity of Hemoglobin and Myoglobin, in Reviews in Biochemical Toxicology (Hodgson, E., Bend, J. R., Philpot, R. M., eds.) Vol. 7, Elsevier, New York, pp. 1–66.Google Scholar
  32. 32.
    Grisham, M. B., and Everse, J. (1991) Pro-oxidant Activity of Hemoglobin and Myoglobin, in Peroxidases in Chemistry and Biology (Everse, J., Everse, K. E., and Grisham, M. B., eds.) CRC Press, Boca Raton, FL, pp. 335–344.Google Scholar
  33. 33.
    Everse, J., Johnson, M. C., and Marini, M. A. (1994) Meth. Enzymol., 231, 547–561.Google Scholar
  34. 34.
    King, N. K., and Winfield, M. E. (1963) J. Biol. Chem., 238, 1520–1528.Google Scholar
  35. 35.
    Wittenberg, J. B. (1978) J. Biol. Chem., 253, 5694–5695.Google Scholar
  36. 36.
    McArthur, K. M., and Davies, M. J. (1993) Biochim. Biophys. Acta, 1202, 173–181.Google Scholar
  37. 37.
    Davies, M. J. (1991) Biochim. Biophys. Acta, 1077, 86–90.Google Scholar
  38. 38.
    George, P., and Irvine, D. H. (1952) Biochem. J., 52, 511–517.Google Scholar
  39. 39.
    George, P., and Irvine, D. H. (1956) J. Colloid Sci., 11, 327–339.Google Scholar
  40. 40.
    Giulivi, C., and Davies, K. J. A. (1990) J. Biol. Chem., 265, 19453–19460.Google Scholar
  41. 41.
    Alayash, A. I. (2001) Artif. Cells. Blood. Substit. Immobil. Biotechnol., 29, 415–425.Google Scholar
  42. 42.
    Jiao, K., Sun, G., and Zhang, S. S. (1998) Science in China (Ser. B), 28, 157–163.Google Scholar
  43. 43.
    Uppu, R. M., and Pryor, W. A. (1999) J. A. Chem. Soc., 121, 9738–9739.Google Scholar
  44. 44.
    Tao, W. S. (1989) Immunology and Immunology Determination [in Chinese], The People Panitation Press, Beijing.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • De-Jia Li
    • 1
  • Xi-Wen Li
    • 1
  • Yu-Xiang Xie
    • 1
  • Xiao-Qiang Cai
    • 1
  • Guo-Lin Zou
    • 1
  1. 1.College of Life SciencesWuhan UniversityWuhan, HubeiPR China

Personalised recommendations