Atomic Energy

, Volume 97, Issue 3, pp 626–631 | Cite as

Accelerator-based source of epithermal neutrons for neutron capture therapy

  • O. E. Kononov
  • V. N. Kononov
  • A. N. Solov’ev
  • M. V. Bokhovko


Computational studies are performed for choosing an optimal material and dimensions of a moderator for forming a beam of epithermal neutrons for boron-neutron-capture therapy based on a proton accelerator and the reaction 7 Li(p, n)7 Be as the neutron source. It is shown that the best material for this is magnesium fluoride. An optimal configuration is proposed for a combined moderator consisting of magnesium fluoride and teflon. The computational results are compared with the experimental data.


Experimental Data Magnesium Fluoride Computational Result Computational Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moss, R., Aiazawa, O., Beynon, D.,  et al. 1997The requirements and development of neutron beams for neutron capture therapy of brain cancerNeuro-Oncology332740Google Scholar
  2. 2.
    Harling, O., Riley, K., Newton, T.,  et al. 2002The fission converter-based epithermal neutron irradiation facility at the Massachusetts Institute of Technology reactorNucl. Sci. Eng.140223240Google Scholar
  3. 3.
    O. Harling and K. Riley, “A critical assessment of NCT beams for fission reactors,” in: Proceedings of the 10th International Congress on Research and Development in Neutron Capture Therapy, Essen, Germany (2002), pp. 159-162.Google Scholar
  4. 4.
    P. Binns, K. Riley, and O. Harling, “Dosimetric comparison of six epithermal neutron beams using an ellipsoidal water phantom,” ibid., pp. 405-409.Google Scholar
  5. 5.
    Wang, C.-K., Blue, T., Gahbauer, R. 1989A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapyNucl. Tech.8493107Google Scholar
  6. 6.
    Allen, A., Beynon, T. 1995A design study for an accelerator based epithermal neutron beam for BNCTPhys. Med. Biol40807821Google Scholar
  7. 7.
    Bluel, D., Donahue, R., Ludewigt, B.,  et al. 1998Designing accelerator-based epithermal neutron beams for boron neutron capture therapyMed. Phys2517251734Google Scholar
  8. 8.
    Bayanov, B., Bokhovko, M., Kononov, V.,  et al. 1998Accelerator-based neutron source for the neutron capture and fast neutron therapy at hospitalNucl. Instrum. Methods in Phys. Res. A413397426Google Scholar
  9. 9.
    Kononov, V. N., Poletaev, E. D., Yurlov, B. D. 1977Absolute yield and spectrum of neutrons from the reaction 7Li(p, n)7BeAt. Énerg43303305Google Scholar
  10. 10.
    O. E. Kononov, V. N. Kononov, and M. V. Bokhovko, “Accelerator-based neutron sources for neutron and neutron-capture therapy,” Preprint FÉI-2985 (2003).Google Scholar
  11. 11.
    A. K. Zhitnik, “Monte Carlo method at the All-Russia Scientific-Research Institute of Experimental Physics,” Vopr. At. Nauk. Tekh., Ser. Mat. Modelir. Fiz. Prots., No. 2, 61-64 (1993).Google Scholar
  12. 12.
    J. Briesmeister, MCNP-A General Monte Carlo n-Particle Transportation Code, LA-1625-M, Ver. 4B (1997).Google Scholar
  13. 13.
    O. E. Kononov, V. N. Kononov, V. V. Korobeinikov, et al., “Optimization of an epithermal-neutron source based on the reaction 7Li(p, n)7Be for neutron-capture therapy,” Preprint FÉI-2984(2003).Google Scholar
  14. 14.
    Kononov, O. E., Kononov, V. N., Solov’ev, N. A. 2003Neutron source for boron-neutron capture therapy based on the reaction 7Li(p, n)7Be near thresholdAt. Énerg94469472Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • O. E. Kononov
    • 1
  • V. N. Kononov
    • 1
  • A. N. Solov’ev
    • 1
  • M. V. Bokhovko
    • 1
  1. 1.State Science Center of the Russian Federation –A. I. Leipunskii Physics and Power Engineering Institute.Russia

Personalised recommendations