Advertisement

Astrophysics and Space Science

, Volume 298, Issue 1–2, pp 255–259 | Cite as

Richtmyer-Meshkov Experiments on the Omega Laser

  • R. M. Hueckstaedt
  • S. H. Batha
  • M. M. Balkey
  • N. D. Delamater
  • J. R. Fincke
  • R. L. Holmes
  • N. E. Lanier
  • G. R. Magelssen
  • J. M. Scott
  • J. M. Taccetti
  • C. J. Horsfield
  • K. W. Parker
  • S. D. Rothman
Article
  • 52 Downloads

Abstract

Observations of the interstellar medium reveal a dynamic realm permeated by shocks. These shocks are generated on a large range of scales by galactic rotation, supernovae, stellar winds, and other processes. Whenever a shock encounters a density interface, Richtmyer-Meshkov instabilities may develop. Perturbations along the interface grow, leading to structure formation and material mixing. An understanding of the evolution of Richtmyer-Meshkov instabilities is essential for understanding galactic structure, molecular cloud morphology, and the early stages of star formation. An ongoing experimental campaign studies Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma at the Omega laser facility. Cylindrical targets, consisting of a low density foam core and an aluminum shell covered by an epoxy ablator, are directly driven by fifty laser beams. The aluminum shell is machined to produce different perturbation spectra. Surface types include unperturbed (smooth), single-mode sinusoids, multi-mode (rough), and multi-mode with particular modes accentuated (specified-rough). Experimental results are compared to theory and numerical simulations.

Keywords

HEDLA hydrodynamics instabilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fincke, J.R., Lamer, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. and Horsfleld, C.J.: 2004, Phys. Rev. Lett., submitted.Google Scholar
  2. Kraichnan, R.H. and Montgomery, D.: 1980, Rep. Prog. Phys. 43, 547.MathSciNetADSCrossRefGoogle Scholar
  3. Lanier, N.E., Barnes, C.W., Batha, S.H., Day, R.D., Magelssen, G.R., Scott, J.M., Dunne, A.M., Parker, K.W. and Rothman, S.D.: 2003, Phys. Plasmas 10, 1816.ADSCrossRefGoogle Scholar
  4. Rayleigh, L.: 1883, Proc. Roy. Math. Soc. 14, 170.MATHGoogle Scholar
  5. Meshkov, E.E.: 1969, Fluid Dynamics 43, 101.Google Scholar
  6. Richtmyer, R,.D.: 1960, Comm. Pure and Appl. Math. 13, 297.MathSciNetCrossRefGoogle Scholar
  7. Taccetti, J.M., Batha, S.H., Fincke, J.R., Delamater, N.D., Lanier, N.E., Magelssen, G.R., Hueckstaedt, R.M., Rothman, S.D., Horsfield, C.J. and Parker, K.W.: 2004, these proceedings.Google Scholar
  8. Taylor, G.I.: 1950, Proc. Roy. Soc. London A 201, 192.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • R. M. Hueckstaedt
    • 1
  • S. H. Batha
    • 1
  • M. M. Balkey
    • 1
  • N. D. Delamater
    • 1
  • J. R. Fincke
    • 1
  • R. L. Holmes
    • 1
  • N. E. Lanier
    • 1
  • G. R. Magelssen
    • 1
  • J. M. Scott
    • 1
  • J. M. Taccetti
    • 1
  • C. J. Horsfield
    • 2
  • K. W. Parker
    • 2
  • S. D. Rothman
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Atomic Weapons EstablishmentAldermastonUK

Personalised recommendations