, Volume 8, Issue 4, pp 430–441 | Cite as

Plant Species Numbers Predicted by a Topography-based Groundwater Flow Index

  • Ursula Zinko
  • Jan Seibert
  • Mats Dynesius
  • Christer Nilsson
Original Articles


The lack of a clear understanding of the factors governing the often-great variation of species numbers over entire landscapes confounds attempts to manage biodiversity. We hypothesized that in a topographically variable boreal forest landscape the availability of shallow groundwater is a major determinant of plant species numbers. We then developed a topographically derived hydrologic index based on multidirectional flow algorithms to account for the variation in availability of such groundwater in the landscape. We found a positive correlation between species numbers of vascular plants in plots ranging from 0.01 to 200 m2 and the hydrologic index. Generally, the landscape was relatively dry and species-poor, but interspersed patches with shallow groundwater had high species numbers and high proportions of regionally uncommon plant species. The index explained 30% of the variation in vascular plant number and correlated quite well (rs = 0.50) with groundwater level, but not as well with a community H+ concentration value (instead of community pH, rs = −0.31), based on species composition. In addition, we found a very strong correlation between species number and the community H+ concentration value (rs −0.84). The hydrologic index is a useful tool for the identification of spatial of species number patterns across entire landscapes. This is an important step in identifying the areas most in need of protection or restoration, designing survey techniques, and understanding the fundamental processes that control the spatial distribution of species.


species richness wetness index boreal forest vascular plants slope nestedness scale dependence 



The Lamm Foundation, the Foundation for Strategic Environmental Research (MISTRA), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (to C.N.), and the Swedish Research Council (to J.S.) funded the project. We thank Kenneth Holmström, Metria, for the interpretation of aerial photographs, and Johan Temnerud, Johanna Lindeberg, Åsa Laurell, Gunilla Nordenmark, Gunilla Nilsson, Per-Erik Wikberg, Göran Brorsson, Johanna Englund, Magnus Larsson, Elisabet Carlborg, Pia Hansson, Magnus Svedmark, and Per Herngren for fieldwork assistance. Kevin Bishop, Niclas Hjerdt, Hans Ivarsson, Roland Jansson, Edward A. Johnson, Bengt-Gunnar Jonsson, and two journal reviewers provided useful comments on the manuscript.


  1. Beers, TW, Dress, PE, Wensel, LC 1966Aspect transformation in site productivity researchJ For646912Google Scholar
  2. Bennett, KD 1997Evolution and ecology: the pace of lifeCambridge University PressCambridge (UK)Google Scholar
  3. Beven, KJ, Kirkby, MJ 1979A physically based, variable contributing area model of basin hydrologyHydrol Sci J244369Google Scholar
  4. Bishop, K, Dambrine, E 1995Localization of tree water uptake in Scots pipe and Norway spruce with hydrological tracersCanadian J For Res2528697Google Scholar
  5. Brualdi, RA, Sanderson, JG 1999Nested species subsets, gaps, and discrepancyOecologia11925664CrossRefGoogle Scholar
  6. Cajander, AK 1926The theory of forest typesActa For Fenn291108Google Scholar
  7. Chipman, SJ, Johnson, EA 2002Understory vascular plant species diversity in the mixedwood boreal forest of western CanadaEcol Appl12588601Google Scholar
  8. Crawley, MJ, Harral, JE 2001Scale dependence in plant biodiversityScience2918648CrossRefPubMedGoogle Scholar
  9. Dorner, B, Lertzman, K, Fall, J 2002Landscape pattern in topographically complex landscapes: issues and techniques for analysisLandscape Ecol1772943CrossRefGoogle Scholar
  10. Dynesius, M 2001Spatial and evolutionary aspects of species diversity, species traits, and human impact with examples from boreal riparian and forest plant communities [dissertation]Umeå UniversityUmeåSwedenGoogle Scholar
  11. Ebeling, F 1978Nordsvenska skogstyperSver Skogsvårds Tidsk7634181Google Scholar
  12. Giesler, R, Högberg, M, Högberg, P 1998Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradientEcology7911937Google Scholar
  13. Grubb, PJ 1987Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphereGee, JHRGiller, PS eds. Organization of communities past and presentBlackweil ScientificOxford (UK)98118Google Scholar
  14. Heikkinen, RK 1991Multivariate analysis of esker vegetation in southern Häme, S FinlandAnn Bot Fenn2820124Google Scholar
  15. Hewitt, G 2000The genetic legacy of the Quaternary ice agesNature40590713CrossRefPubMedGoogle Scholar
  16. Hjerdt, KN, McDonell, JJ, Seibert, J, Rodhe, A 2004A new topographic index to quantify downslope controls on local drainage waterResour Res40W05602doi: 10.1029/2004WR003130CrossRefGoogle Scholar
  17. Hutchinson, TF, Boerner, REJ, Iverson, LR, Sutherland, S, Sutherland, KS 1999Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A) Quercus forestsPlant Ecol14417789CrossRefGoogle Scholar
  18. Iverson, LR, Dale, ME, Scott, CT, Prasad, A 1997A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)Landscape Ecol1233148CrossRefGoogle Scholar
  19. Jonsson, BG 2001A null model for randomization tests of nestedness in species assemblagesOecologia12730913CrossRefGoogle Scholar
  20. Lamb, R, Beven, KJ, Myrabø, S 1997Discharge and water table predictions using a generalized TOPMODEL formulationHydrol Proc11114567CrossRefGoogle Scholar
  21. Krok, TOBN, Almquist, S 2001Svensk flora: fanerogamer och ormbunksväxterLiber UtbildningStockholmGoogle Scholar
  22. Moore, ID, Grayson, RB, Ladson, AR 1991Digital terrain modelling: a review of hydrological, geomorphological, and biological applicationsHydrol Process5530Google Scholar
  23. Moore, RD, Thompson, JC 1996Are water table variations in a shallow forest soil consistent with the TOPMODEL concept?Water Resour Res326639CrossRefGoogle Scholar
  24. Nichols, WF, Killingbeck, KT, August, PV 1998The influence of geomorphological heterogeneity on biodiversity: IIA landscape perspective. Conserv Biol123719Google Scholar
  25. Økland, RH, Eilertsen, O 1994Canonical correspondence analysis with variation partitioning: some comments and an applicationJ Ve Sci511726Google Scholar
  26. O’Loughlin, M 1986Prediction of surface saturation zones in natural catchments by topographic analysisWater Resour Res22794804Google Scholar
  27. Ostendorf, B, Reynolds, JF 1998A model of arctic tundra vegetation derived from topographic gradientsLandscape Ecol13187201CrossRefGoogle Scholar
  28. Pärtel, M 2002Local plant diversity patterns and evolutionary history at the regional scaleEcology8323616Google Scholar
  29. Patterson, B, Atmar, W 1986Nested subsets and the structure of insular mammalian faunas and archipelagosBiol J Linn Soc286582Google Scholar
  30. Quinn, PF, Beven, K, Chevallier, P, Planchon, O 1991The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain modelsHydrol Process55979Google Scholar
  31. Quinn, PF, Beven, KJ, Lamb, R 1995The ln(a/tanβ) index: how to calculate it and how to use it within the topmodel frameworkHydrol Process916182Google Scholar
  32. Rodhe, A, Seibert, J 1999Wetland occurrence in relation to topography: a test of topographic indices as moisture indicatorsAgric For Meteorol98–9932540CrossRefGoogle Scholar
  33. Seibert, J, Bishop, K, Nyberg, L 1997A test of TOPMODEL’s ability to predict spatially distributed groundwater levelsHydrol Proc11113144CrossRefGoogle Scholar
  34. Skov, F, Svenning, JC 2003Predicting plant species richness in a managed forestFor Ecol Manag18058393Google Scholar
  35. Stanford, JA 1997Toward a robust water policy for the western USA: a synthesis of the scienceMinckley, WL eds. Aquatic ecosystem symposium: a report to the Western Water Policy Review Advisory CommissionArizona State UniversityTempe (AZ)7984Google Scholar
  36. Tarboton, DG 1997A new method for the determination of flow directions and upslope areas in grid digital elevation modelsWater Resour Res3330919CrossRefGoogle Scholar
  37. Trexler, JC, Travis, J 1993Nontraditional regression analysesEcology74162937Google Scholar
  38. Western, AW, Grayson, RB, Blösehl, G, Willgoose, GR, McMahon, TA 1999Observed spatial organization of soil moisture and its relation to terrain indicesWater Resour Res35797810CrossRefGoogle Scholar
  39. Whittaker, RJ, Willis, KJ, Field, RJ 2001Scale and species richness: towards a general, hierarchical theory of species diversityJ Biogeogr2845370CrossRefGoogle Scholar
  40. Williams, RN, Bisson, PA, Bottom, DL, Calvin, LD, Coutant, CC, Erho, MW,Jr, Frissell, CA 1999Scientific issues in the restoration of salmonid fishes in the Columbia RiverFish Manag24109Google Scholar
  41. Willis, KJ, Whittaker, RJ 2000The refugial debateScience28714067CrossRefPubMedGoogle Scholar
  42. Wolock, DM, McCabe, GJ 1995Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODELWater Resour Res311315 24CrossRefGoogle Scholar
  43. Wood, EF, Sivapalan, M, Beven, K, Band, L 1988Effects of spatial variability and scale with implications to hydrologic modelingJ Hydrol1022947CrossRefGoogle Scholar
  44. Yeakley, JA, Swank, WT, Swift, LW, Hornberger, GM, Shugart, HH 1998Soil moisture gradients and controls on a southern Appalachian hillslope from drought through rechargeHydrol Earth System Sci2419Google Scholar
  45. Zobel, M 1997The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? TREE or Trends Ecol Evol122669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ursula Zinko
    • 1
  • Jan Seibert
    • 2
    • 3
  • Mats Dynesius
    • 1
  • Christer Nilsson
    • 1
  1. 1.Landscape Ecology Group, Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  2. 2.Department of Environmental Assessment, SwedishUniversity of Agricultural SciencesUppsalaSweden
  3. 3.Department of Physical Geography and Quaternary GeologyStockholm UniversitystockholmSweden

Personalised recommendations