Biochemical Genetics

, Volume 30, Issue 3–4, pp 159–168 | Cite as

Polymorphism in aDrosophila indirect flight muscle-specific tropomyosin isozyme does not affect flight ability

  • Richard M. Cripps
  • John C. Sparrow


We describe polymorphism in aDrosophila indirect flight muscle-specific tropomyosin isozyme, named TnH-34. Three variants of this protein differ in their mobilities as determined by 1-D and 2-D SDS-PAGE. Meiotic mapping places the polymorphism close to, if not within, the structural gene encoding this tropomyosin isozyme. The most likely site of the mutations is within a single C-terminal exon. Flight-testing of different genotypes reveals that this variation in TnH-34 does not affect flight ability. These results suggest that some sequence variation may be tolerated in this section of the protein and correlate with the variability of this protein in different insect species.

Key words

Drosophila indirect flight muscle tropomyosin polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullard, B., Leonard, K., Larkins, A., Butcher, G., Karlik, C. C., and Fyrberg, E. A. (1988). Troponin of asynchronous flight muscle.J. Mol. Biol. 204621.Google Scholar
  2. Burnette, W. N. (1981). «Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulphate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Anal. Biochem. 112195.Google Scholar
  3. Carpenter, J. M. (1950). A new semisynthetic food medium forDrosophila.Dros. Inform. Serv. 2496.Google Scholar
  4. Drummond, D. R., Hennessey, E. S., and Sparrow, J. C. (1991). Characterisation of missense mutations in theAct88F gene ofDrosophila melanogaster.Mol. Gen. Genet. 22670.Google Scholar
  5. Hanke, P. D., Lepinske, H. M., and Storti, R. V. (1987). Characterisation of aDrosophila cDNA clone that encodes a 252-amino acid nonmuscle tropomyosin isoform.J. Biol. Chem. 26217370.Google Scholar
  6. Hanke, P. D., and Storti, R. V. (1988). TheDrosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing.Mol. Cell. Biol. 83591.Google Scholar
  7. Hawkes, R., Niday, E., and Gordon, J. (1982). A dot-immunoblotting assay for monoclonal and other antibodies.Anal. Biochem. 119142.Google Scholar
  8. Karlik, C. C., Mahaffey, J. W., Coutu, M. D., and Fyrberg, E. A. (1984). Organisation of contractile protein genes within the 88F subdivision of theD. melanogaster third chromosome.Cell 37469.Google Scholar
  9. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 345273.Google Scholar
  10. Laurie-Ahlberg, C. C., Barnes, P. T., Curtsinger, J. W., Emigh, T. H., Karlin, B., Morris, R., Norman, R. A., and Wilton, A. N. (1985). Genetic variability of flight metabolism inDrosophila melanogaster. II. Relationship between power output and enzyme activity levels.Genetics 111845.Google Scholar
  11. Lindsley, D. L., and Grell, E. H. (1968).Genetic Variations of Drosophila melanogaster, Carnegie Institute of Washington Publ. 627.Google Scholar
  12. Lindsley, D. L., and Zimm, G. (1985). The genome ofDrosophila melanogaster. 1. Genes A-K.Dros. Inform. Serv. 621.Google Scholar
  13. Lindsley, D. L., and Zimm, G. (1990). The genome ofDrosophila melanogaster. 4. Genes L-Z; balancers; transposable elements.Dros. Inform. Serv. 681.Google Scholar
  14. Mahaffey, J. W., Coutu, M. D., Fyrberg, E. A., and Inwood, W. (1985). The flightlessDrosophila mutantraised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscle.Cell 40101.Google Scholar
  15. Mogami, K., and Hotta, Y. (1981). Isolation ofDrosophila flightless mutants which affect myofibrillar proteins of insect flight muscle.Mol. Gen. Genet. 183409.Google Scholar
  16. Mogami, K., Fujita, S. C., and Hotta, Y. (1982). Identification ofDrosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis.J. Biochem. 91643.Google Scholar
  17. Noelken, M. E., Wisdom, B. J., Jr., and Hudson, B. G. (1981). Estimation of the size of collagenous polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Anal. Biochem. 110131.Google Scholar
  18. O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 2504007.Google Scholar
  19. Peckham, M., Molloy, J. E., Sparrow, J. C., and White, D. C. S. (1990). Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle ofDrosophila melanogaster.J. Muscle Res. Cell Motil. 11203.Google Scholar
  20. Peckham, M., Bullard, B., Cripps, R. M., and White, D. C. S. (1991). The role of troponin-H, a specific insect flight muscle regulatory protein, in stretch-activation.J. Physiol. 438:149P.Google Scholar
  21. Peckham, M., Cripps, R. M., White, D. C. S., and Bullard, B. (1992). Mechanics and protein content of insect flight muscles.J. Exp. Biol. (in press).Google Scholar
  22. Sparrow, J. C., Drummond, D. R., Peckham, M., Hennessey, E. S., and White, D. C. S. (1991). Protein engineering and the study of muscle contraction inDrosophila flight muscles.J. Cell Sci. s1473.Google Scholar
  23. Steel, R. G. D., and Torrie, J. H. (1981).Principle Procedures of Statistics 2nd ed., McGraw-Hill Kogagusha, Tokyo.Google Scholar
  24. Unwin, D. M., and Ellington, C. P. (1979). An optical tachometer for measurement of the wing-beat frequency of free-flying insects.J. Exp. Biol. 82377.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Richard M. Cripps
    • 1
  • John C. Sparrow
    • 1
  1. 1.Department of BiologyUniversity of YorkHeslingtonU.K.

Personalised recommendations