Advertisement

Journal of Materials Science

, Volume 13, Issue 12, pp 2569–2576 | Cite as

Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus

Part 1 Synthesis of polycarbosilane as precursor
  • S. Yajima
  • Y. Hasegawa
  • J. Hayashi
  • M. Iimura
Papers

Abstract

Polycarbosilane as the precursor of continuous SiC fibre was synthesized by thermal decomposition of polydimethylsilane. The structure of the polycarbosilane is concluded to be similar to that of polysilapropylene by the measurements of i.r. spectra, NMR spectra and chemical analyses. Its formation mechanisms are initially the formation of carbosilane by thermal decomposition of polydimethylsilane and then the increase in molecular weight by dehydrogenation-condensation of the carbosilane. Molecular structure and molecular weight distribution of the polycarbosilane depend on the reaction temperature.

Keywords

Molecular Weight Carbide Tensile Strength Thermal Decomposition Reaction Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yajima, J. Hayashi andM. Omori,Chem. Lett. (1975) 931.Google Scholar
  2. 2.
    S. Yajima, K. Okamura andJ. Hayashi,ibid. (1975) 1209.Google Scholar
  3. 3.
    S. Yajima, J. Hayashi, M. Omori and K. Okamura,Nature 260 (1976) 683.Google Scholar
  4. 4.
    S. Yajima, K. Okamura, J. Hayashi andM. Omori,J. Amer. Ceram. Soc. 59 (1976) 324.Google Scholar
  5. 5.
    H. Gilman andR. A. Tomasi,J. Org. Chem. 28 (1963) 165.Google Scholar
  6. 6.
    C. A. Burkhard,J. Amer. Chem. Soc. 71 (1949) 963.Google Scholar
  7. 7.
    R. West andA. Indriksons,ibid. 94 (1972) 6110.Google Scholar
  8. 8.
    C. G. Pitt, M. M. Bursey andP. F. Rogerson,ibid. 92 (1970) 519.Google Scholar
  9. 9.
    R. West andE. Carberry,Science 189 (1975) 179.Google Scholar
  10. 10.
    E. Carberry andR. West,J. Amer. Chem. Soc. 91 (1969) 5440.Google Scholar
  11. 11.
    W. R. Bamford, J. C. Lovie andJ. A. C. Watt,J. Chem. Soc. (c) (1966) 1137.Google Scholar
  12. 12.
    G. Fritz, W. Kemmerling, G. Sonntag, H. J. Becher, E. A. V. Ebswarth andJ. Grobe,Z. Anorg. Allg. Chem. 321 (1963) 10.Google Scholar
  13. 13.
    G. Fritz, J. Grobe andD. Kummer,Advan. Inorg. Chem. Radiochem. 7 (1965) 349.Google Scholar
  14. 14.
    H. Sakurai, R. Koh, A. Hosomi andM. Kumada,Bull. Chem. Soc. Japan 39 (1966) 2050.Google Scholar
  15. 15.
    H. Sakurai, A. Hosomi andM. Kumada,Chem. Commun. (1968) 930.Google Scholar
  16. 16.
    K. Shiina andM. Kumada,J. Org. Chem. 23 (1958) 139.Google Scholar
  17. 17.
    W. H. Atwell andD. R. Weyenberg,Intra-Science Chem. Report 7 (1973) 139.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • S. Yajima
    • 1
  • Y. Hasegawa
    • 1
  • J. Hayashi
    • 1
  • M. Iimura
    • 1
    • 2
  1. 1.The Oarai Branch, The Research Institute for Iron, Steel and Other MetalsTohoku UniversityIbaraki-kenJapan
  2. 2.Research and Development LaboratoryNippon Carbon Co. Ltd.Kanagawa-kenJapan

Personalised recommendations