Advertisement

Theoretica chimica acta

, Volume 63, Issue 6, pp 511–527 | Cite as

Valency. II. Applications to molecules with first-row atoms

  • M. S. Gopinathan
  • Karl Jug
Original Investigations
  • 40 Downloads

Abstract

A quantum chemical definition of valency proposed in Part I is used to calculate the valency of carbon, nitrogen, oxygen, lithium, beryllium and boron in a number of compounds with the SINDO1 method. It is demonstrated that consistency of the basis set is necessary for comparable results. The general features of valency and bonding in these molecules are discussed. The π-electron concept of free valence is generalised to sigma systems and atoms in molecules are classified as subvalent, normal or hypervalent. The relation between valency and natural hybrid occupancy is illustrated. The symmetry properties of natural hybrid orbitals are discussed by means of group theory. A preliminary attempt is made to relate covalency and covalent reactivity. Bond indices and the σ, π character of bonds are obtained by a suitable partitioning and projection of valency into bonding and antibonding contributions.

Key words

Valency of first-row atoms Free valence Bond indices Natural hybrids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gopinathan, M. S., Jug, K.: Theoret. Chim. Acta (Berl.), this Vol., preceding paperGoogle Scholar
  2. 2.
    Coulson, C. A.: Trans. Faraday Soc.42, 265 (1946)Google Scholar
  3. 3.
    Wiberg, K. B.: Tetrahedron24, 1083 (1968)Google Scholar
  4. 4.
    Jug, K.: Theoret. Chim. Acta (Berl.)51, 331 (1979)Google Scholar
  5. 5.
    Salem, L.: The molecular orbital theory of conjugated systems. New York: W. A. Benjamin, Inc. 1966Google Scholar
  6. 6.
    Jug, K., Bussian, B. M.: Theoret. Chim. Acta (Berl.)52, 341 (1979)Google Scholar
  7. 7.
    Nanda, D. N., Jug, K.: Theoret. Chim. Acta (Berl.)57, 95 (1980)Google Scholar
  8. 8.
    For a discussion see Schleyer, P. von R. in: New Horizons of Quantum Chemistry, p. 95ff, Ed. P. O. Löwdin, B. Pullman, Reidel: Dordrecht 1983Google Scholar
  9. 9.
    Foster, J. P., Weinhold, F.: J. Am. Chem. Soc.102, 7211 (1980)Google Scholar
  10. 10.
    McWeeny, R.: Rev. Mod. Phys.32, 335 (1960)Google Scholar
  11. 11.
    Kishner, S., Whitehead, M. A., Gopinathan, M. S.: J. Am. Chem. Soc.100, 1365 (1978)Google Scholar
  12. 12.
    Roberts, J. D., Caserio, M. C.: Basic principles of organic chemistry. New York: W. A. Benjamin, Inc. 1965Google Scholar
  13. 13.
    Muller-Remmers, P. L.: private communicationGoogle Scholar
  14. 14.
    Van Vleck, J. H.: Pure Appl. Chem.24, 235 (1970)Google Scholar
  15. 15.
    Jug, K.: J. Am. Chem. Soc.100, 6581 (1978)Google Scholar
  16. 16.
    Newton, M. D. in: Applications of electronic structure theory, Ed. Schaefer III, H. F. New York: Plenum Press, 1977Google Scholar
  17. 17.
    Bovey, F. A.: Chem. Eng. News43, 98 (1965)Google Scholar
  18. 18.
    Gopinathan, M. S.: unpublished resultsGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. S. Gopinathan
    • 1
  • Karl Jug
    • 1
  1. 1.Theoretische ChemieUniversität HannoverHannoverFederal Republic of Germany

Personalised recommendations