Advertisement

Journal of Materials Science

, Volume 15, Issue 2, pp 415–425 | Cite as

X-ray line broadening study of splatquenched Ag-Sn alloys

  • A. M. Tonejc
  • A. Bonefačić
Papers
  • 35 Downloads

Abstract

Microstrains, effective particle sizes, and stacking fault probabilities were determined by analysis of X-ray powder pattern peaks of splat-quenched Ag-6 at % Sn, Ag-8.2 at % Sn and Ag-11 at % Sn alloys.

The shapes and positions of all available (h k l) reflections for Cu radiation were recorded, using focusing Bragg-Brentano X-ray geometry. To measure peak positions, Co radiation and a Seeman-Bohlin camera were used with an internal standard.

Fourier analysis and Stokes correction were used. The separation of particle sizes and microstrain components was performed using the Warren-Averbach and the single-profile methods. Errors arising during the separation of particle sizes and microstrains from an inaccurate estimation of background intensity, and the influence of standards with different annealing treatments, were considered.

The particle sizes and microstrains were found to be anisotropic. This anisotropy was due to the presence of stacking faults and an irregular distribution of dislocations in asquenched samples. Peak shift analysis showed that some macrostresses remained after plastic deformation caused by quenching. It appears that better quenching produces thinner samples and higher macrostresses. The particle sizes, microstrains and compound stacking fault probabilities were compared with corresponding values for cold-worked filings and bulk compressed alloys.

Keywords

Annealing Treatment Background Intensity Powder Pattern Thin Sample Inaccurate Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Thomas and R. H. Willens, Acta Met. 12 (1964) 191.Google Scholar
  2. 2.
    A. M. Tonejc and D. Kunstelj, Fizika 8 (1976) 194.Google Scholar
  3. 3.
    J. Dixmier and A. Guinier, Mém. Scient. Rev. Metall. 64 (1967) 53.Google Scholar
  4. 4.
    A. M. Tonejc, A. Kirin and A. Bonefačić, Fizika 8 (1976) 87.Google Scholar
  5. 5.
    R. P. J. Adler and C. N. J. Wagner, Met. Trans. 1 (1970) 2791.Google Scholar
  6. 6.
    Idem, J. Appl. Phys. 33 (1962) 3451.Google Scholar
  7. 7.
    C. J. Newton and A. W. Ruff Jr, Met. Trans. 1 (1970) 2833.Google Scholar
  8. 8.
    A. R. Stokes, Proc. Phys. Soc. London 61 (1948) 382.Google Scholar
  9. 9.
    B. E. Warren and B. L. Averbach, J. Appl. Phys. 21 (1950) 595; idem, ibid. 23 (1952) 497.Google Scholar
  10. 10.
    A. Gangulee, J. Appl. Cryst. 7 (1974) 434.Google Scholar
  11. 11.
    B. E. Warren, Progress Met. Phys. 8 (1959) 147.Google Scholar
  12. 12.
    N. C. Halder and C. N. J. Wagner, Adv. X-ray Analysis 9 (1966) 91.Google Scholar
  13. 13.
    C. N. J. Wagner, “Local Atomic Arrangements Studied by X-ray Diffraction” (Gordon and Breach, New York, 1966) pp. 219 and 255.Google Scholar
  14. 14.
    J. Mignot and D. Rondot, Acta Met. 23 (1975) 1321.Google Scholar
  15. 15.
    G. Gilli and P. A. Borea, J. Appl. Cryst. 3 (1970) 205.Google Scholar
  16. 16.
    H. P. Klug and L. E. Alexander, “X-ray Diffraction Procedures” (John Wiley and Sons, New York, 1974) p. 167.Google Scholar
  17. 17.
    W. A. Rachinger, J. Sci. Instrum. 25 (1948) 254; idem, ibid. 25 (1948) 353.Google Scholar
  18. 18.
    J. B. Cohen and C. N. J. Wagner, J. Appl. Phys. 33 (1962) 2073.Google Scholar
  19. 19.
    L. Delehouzée and A. Deruyttere, Acta Met. 15 (1967) 727.Google Scholar
  20. 20.
    S. P. Sen Gupta and M. De, J. Appl. Cryst. 3 (1970) 410.Google Scholar
  21. 21.
    C. N. J. Wagner, J. P. Boisseau and E. A. Aqua, Trans. Met. Soc. AIME 233 (1965) 1280.Google Scholar
  22. 22.
    G. B. Greenough, Prog. Met. Phys. 3 (1952) 176.Google Scholar
  23. 23.
    G. Simons and H. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A. Handbook” (The M.I.T. Press, London, 1971) pp. 86 and 90.Google Scholar
  24. 24.
    D. Kunstelj and A. Bonefačić, Proc. Yug. Centre of Crystall. 10 (1975) 80.Google Scholar
  25. 25.
    Fu-Wen Ling and E. A. Starke, J. Appl. Cryst. 3 (1970) 407.Google Scholar
  26. 26.
    P. C. J. Gallagher, Met. Trans. 1 (1970) 2429.Google Scholar
  27. 27.
    J. W. Kirby, D. J. Borich and D. E. Mikkola, ibid. 4 (1973) 1129.Google Scholar
  28. 28.
    W. G. Truckner and D. E. Mikkola, J. Appl. Phys. 40 (1969) 5021.Google Scholar
  29. 29.
    D. E. Mikkola and J. B. Cohen, ibid. 33 (1962) 892.Google Scholar
  30. 30.
    G. K. Williamson and R. E. Smallman, Phil. Mag. 1 (1956) 34.Google Scholar
  31. 31.
    R. E. Smallman and K. H. Westmacott, ibid. 2 (1957) 669.Google Scholar
  32. 32.
    J. Mignot and D. Rondot, J. Appl. Cryst. 6 (1973) 447.Google Scholar
  33. 33.
    A. Pauvert, Thèsis, Besançon (1974).Google Scholar
  34. 34.
    H. A. Davies and C. N. J. Wagner, J. Mater. Sci. 7 (1972) 105.Google Scholar
  35. 35.
    J. N. Grant, Fizika 2, Suppl. 2 (1970) 16.1.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • A. M. Tonejc
    • 1
  • A. Bonefačić
    • 1
  1. 1.Institute of Physics of the UniversityZagrebYugoslavia

Personalised recommendations