Advertisement

Research in Experimental Medicine

, Volume 190, Issue 1, pp 203–211 | Cite as

Adhesion and spreading of corneal endothelial cells on collagens type I and IV in vitro: a model to study mechanisms of endothelial repair

  • H. Rixen
  • C. J. Kirkpatrick
  • T. Axer
  • G. Hollweg
  • J. Friedrich
Article

Summary

In vitro assays using endothelial cells (EC, bovine corneal) were performed to study adhesion and spreading on collagen types I and IV. Adhesion was quantitatively analyzed by counting the EC under a light microscope. Spreading was determined by measuring cell area using a scanning electron microscope (SEM). Collagen types I, IV, and IV-F, a mixture of 70, 120, and 140 KD fragments of type IV, all promoted EC adhesion, Types IV and IV-F showed evidence of giving a more marked adhesion than type I. A study of cell area, carried out under identical conditions, such as those in the adhesion assay, showed that types I and IV-F, but not type IV, promoted cell spreading. This provides evidence that cell adhesion and spreading are indeed separate biological phenomena. Furthermore, the ability of fragments of type IV collagen to promote both cell adhesion and spreading may represent an inherent repair mechanism in damaged endothelium.

Key words

Endothelial cells Basement membrane Adhesion Spreading Collagens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berliner JA (1981) Regulation of endothelial cell DNA synthesis and adherence. In Vitro 17:985–992CrossRefGoogle Scholar
  2. 2.
    Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmebrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525PubMedCrossRefGoogle Scholar
  3. 3.
    Curtis ASG, McMurray H (1986) Conditions for fibroblast adhesion without fibronectin. J Cell Sci 86:25–33PubMedGoogle Scholar
  4. 4.
    Dieringer H (1982) Untersuchungen zur molekularen und makromolekularen Struktur von Typ IV Kollagen aus menschlicher Plazenta. Ph. D. Thesis, Faculty of Science, Ludwig-Maximilians-University, MunichGoogle Scholar
  5. 5.
    Dieringer H, Hollister DW, Glanville RW, Sakai LY, Kühn K (1985) Structural studies of human basement-membrane collagen with the use of a monoclonal antibody. Biochem J 227:217–222PubMedGoogle Scholar
  6. 6.
    Eldor A, Vlodavsky I, Hy-Am E, Atzmon R, Weksler BB, Raz A, Fuks Z (1983) Cultured endothelial cells increase their capacity to synthesize prostacyclin following the formation of a contact inhibited cell monolayer. J Cell Physiol 114:179–183PubMedCrossRefGoogle Scholar
  7. 7.
    Fritz H, Jochum M, Geiger R, Duswald KH, Dittmer H, Kortmann H, Neumann S, Lang H (1986) Granulocyte proteinases as mediators of unspecific proteolysis in inflammation: a review. Folia Histochem Cytobiol 24:99–115PubMedGoogle Scholar
  8. 8.
    Gold LI, Pearlstein E (1980) Fibronectin-collagen binding and requirement during cellular adhesion. Biochem J 186:551–559PubMedGoogle Scholar
  9. 9.
    Gospodarowicz D, Mescher AR, Birdwell CR (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. Exp Eye Res 25:75–89PubMedCrossRefGoogle Scholar
  10. 10.
    Jaffe EA, Mosher DF (1978) Synthesis of fibronectin by cultured human endothelial cells. J Exp Med 148:1779–1791CrossRefGoogle Scholar
  11. 11.
    Kühn K, Wiedemann H, Timpl R, Risteli J, Dieringer H, Voss T, Glanville RW (1981) Macromolecular structure of basement membrane collagens. Identification of 7S collagen as a crosslinking domain of type IV collagen. FEBS Lett 125:123–128PubMedCrossRefGoogle Scholar
  12. 12.
    Lapis K, Paku S, Liotta LA (1988) Endothelialization of embolized tumor cells during metastasis formation. Clin Exp Metastasis 6:73–89PubMedCrossRefGoogle Scholar
  13. 13.
    Lasser A (1983) The mononuclear phagocytic system: a review. Hum Pathol 14:108–126PubMedCrossRefGoogle Scholar
  14. 14.
    Macarak EJ, Howard PS (1983) Adhesion of endothelial cells to extracellular matrix proteins. J Cell Physiol 116:76–86PubMedCrossRefGoogle Scholar
  15. 15.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33PubMedCrossRefGoogle Scholar
  16. 16.
    Ross R, Raggiotto A, Bowen-Pope D, Raines E (1984) The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation 70 [Suppl III]:77–82Google Scholar
  17. 17.
    Ryan GB, Majno G (1977) Acute inflammation: a review. Am J Pathol 86:183–276PubMedGoogle Scholar
  18. 18.
    Sage H, Pritzl P, Bornstein P (1981) Secretory phenotypes of endothelial cells in culture: comparison of aortic, venous, capillary, and corneal endothelium. Arteriosclerosis 1:427–442PubMedCrossRefGoogle Scholar
  19. 19.
    Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502PubMedCrossRefGoogle Scholar
  20. 20.
    Tryggvason K, Höyhtyä M, Salo T (1987) Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 907:191–217PubMedGoogle Scholar
  21. 21.
    Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sassa J, Klagsbrun M (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84:2292–2296PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. Rixen
    • 1
  • C. J. Kirkpatrick
    • 1
  • T. Axer
    • 1
  • G. Hollweg
    • 1
  • J. Friedrich
    • 1
  1. 1.Institute of PathologyTechnical University of Aachen (RWTH)AachenFederal Republic of Germany

Personalised recommendations